Вывод закона био-савара — Доброе дело

Вывод закона био-савара

Закон Био — Савара — Лапласа и его применение к расчету магнитного поля

Магнитное поле постоянных токов различной формы изучалось французскими учеными Ж. Био (1774—1862) и Ф. Саваром (1791—1841). Результаты этих опытов были обобщены выдающимся французским математиком и физиком П. Лапласом.

Закон Био — Савара — Лапласа для проводника с током I , элемент dl которого создает в некоторой точке А (рис. 164) индукцию поля dB, записывается в виде

(110.1)

где dl — вектор, по модулю равный длине dl элемента проводника и совпадающий по направлению с током, r —радиус-вектор, проведанный из элемента dl проводника в точку А поля, r — модуль радиуса-вектора r . Направление dB перпендикулярно dl и r, т. е. перпендикулярно плоскости, в которой они лежат, и совпадает с касательной к линии магнитной индукции. Это направление может быть найдено по правилу нахождения линий магнитной индукции (правилу правого винта): направление вращения головки винта дает направление dB, если поступательное движение винта соответствует направлению тока в элементе.

Модуль вектора dB определяется выражением

(110.2)

где a — угол между векторами dl и r .

Для магнитного поля, как и для электрического, справедлив принцип суперпозиции: магнитная индукция результирующего поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме магнитных индукций складываемых полей, создаваемых каждым током или движущимся зарядом в отдельности:

(110.3)

Расчет характеристик магнитного поля (В и Н) по приведенным формулам в общем случае сложен. Однако если распределение тока имеет определенную сим­метрию, то применение закона Био — Савара — Лапласа совместно с принципом суперпозиции позволяет просто рассчитать конкретные поля. Рассмотрим два примера.

1. Магнитное поле прямого тока — тока, текущего по тонкому прямому проводу бесконечной длины (рис. 165). В произвольной точке А, удаленной от оси проводника на расстояние R , векторы dB от всех элементов тока имеют одинаковое направление, перпендикулярное плоскости чертежа («к вам»). Поэтому сложение векторов dB можно заменить сложением их модулей. В качестве постоянной интегрирования выберем угол a (угол между векторами dl и r ), выразив через него все остальные величины. Из рис. 165 следует, что

(радиус дуги CD вследствие малости dl равен r , и угол FDC по этой же причине можно считать прямым). Подставив эти выражения в (110.2), получим, что магнитная индукция, создаваемая одним элементом проводника, равна

(110.4)

Так как угол a для всех элементов прямого тока изменяется в пределах от 0 до p , то, согласно (110.3) и (110.4),

Следовательно, магнитная индукция поля прямого тока

(110.5)

2. Магнитное поле в центре кругового проводника с током (рис. 166). Как следует из рисунка, все элементы кругового проводника с током создают в центре магнитные поля одинакового направления — вдоль нормали от витка. Поэтому сложение векторов dB можно заменить сложением их модулей. Так как все элементы проводника перпендикулярны радиусу-вектору ( sin a =1) и расстояние всех элементов проводника до центра кругового тока одинаково и равно R, то, согласно (110.2),

Вывод закона био-савара

§2. Закон Био – Савара – Лапласа

В 1820 году французские учёные Ж. Био и Ф. Савар исследовали магнитные поля, создаваемые в воздухе прямолинейным током, круговым током, катушкой с током и т. д. На основании многочисленных опытов они пришли к следующим выводам:

– магнитная индукция в произвольной точке поля зависит от расположения этой точки по отношению к проводу с током;
– магнитная индукция зависит от конфигурации (формы и размеров) провода с током;
– во всех случаях модуль вектора индукции магнитного поля, создаваемого тонким проводом с током, пропорционален силе тока.

Био и Савар пытались получить общий закон, позволяющий вычислить магнитную индукцию в каждой точке поля, создаваемого электрическим током, текущим в проводнике любой формы. Но сделать им это не удалось, и они обратились к известному французскому математику, физику и астроному П. Лапласу. Лаплас учёл векторный характер магнитного поля и высказал важную гипотезу о том, что индукция B → \vec в каждой точке магнитного поля любого проводника с током представляет собой векторную сумму индукций Δ B → i \Delta \vec_i магнитных полей, создаваемых каждым достаточно малым участком проводника (элементом тока):

Этим Лаплас предположил, что при наложении магнитных полей справедлив принцип суперпозиции, то есть принцип независимого действия магнитных полей, создаваемых несколькими источниками полей.

Приведём для справки, но не для запоминания, полученную Лапласом формулу, выражающую закон Био – Савара – Лапласа:

Следует заметить, что правило буравчика при установлении связи между направлением тока и поля можно применять и в обратном порядке, то есть вращать буравчик так, чтобы его остриё, помещённое в исследуемую точку, двигалось по направлению вектора индукции магнитного поля, а конец рукоятки двигался в направлении тока. Проверьте это для случая, изображённого на рис. 3. Такой подход особенно удобен для витка с током при нахождении направления магнитного поля внутри витка (рис. 4).

То, что в законе Био – Савара – Лапласа модуль вектора индукции магнитного поля, создаваемого элементом тока в некоторой точке, пропорционален силе тока и длине элемента тока, легко запомнить, так как это следует непосредственно из принципа суперпозиции магнитных полей. Действительно, увеличим ток в элементе тока в два раза. Тогда модуль вектора магнитной индукции поля, создаваемого в некоторой точке этим элементом, увеличится тоже в два раза, не изменив направления, поскольку элемент тока с током 2 I 2I можно представить как два плотно прижатых друг к другу элемента тока с токами I I в каждом и применить принцип суперпозиции для полей, создаваемых этими двумя элементами. Аналогичные рассуждения будут и при увеличении тока в любое число раз. Это доказывает, что модуль вектора магнитной индукции пропорционален току. Похожие рассуждения можно провести и в отношении длины элемента тока.

Рассмотрим поле сколь угодно длинного прямолинейного провода с током. Пользуясь законом Био – Савара – Лапласа, нетрудно догадаться, что силовые линии магнитного поля будут представлять собой окружности, лежащие в плоскостях, перпендикулярных оси провода. Центры окружностей будут на оси провода. Величина индукции поля должна убывать с увеличением расстояния до провода. Направление силовых линий определяется по правилу буравчика, остриё которого в данном случае удобно направить по току. На рис. 5 ток в проводе направлен перпендикулярно плоскости чертежа, за плоскость чертежа и обозначен крестиком.

В качестве самостоятельного упражнения полезно объяснить с помощью закона Био – Савара – Лапласа и правила буравчика ход магнитных силовых линий на всех рисунках школьного учебника.

31. Закон Био-Савара-Лапласа и применение его к расчёту магнитного поля прямолинейного проводника стоком.

В произвольной точке А, удаленной на расстояние R от оси проводника, векторы dB от всех элементов тока имеют одинаковое направление, которое перпендикулярно плоскости чертежа («к вам»). Значит, сложение всех векторов dB можно заменить сложением их модулей. За постоянную интегрирования возьмем угол α (угол между векторами dl и r) и выразим через него все остальные величины. Из рис. 2 следует, что

(радиус дуги CD вследствие малости dl равен r, и угол FDC по этой же причине можно считать прямым). Подставив эти формулы в (2), получим, что магнитная индукция, которая создавается одним элементом проводника, равна (4)

Поскольку угол α для всех элементов прямого тока изменяется в пределах от 0 до π, то, согласно (3) и (4),

Значит, магнитная индукция поля прямого тока (5)

32. Закон Био-Савара-Лапласа и применение его к расчёту магнитного поля оси кругового витка с током

Магнитное поле в центре кругового проводника с током (рис. 166). Как следует из рисунка, все элементы кругового проводника с током создают в центре магнитные поля одинакового направления — вдоль нормали от витка. Поэтому сложение векторов dB можно заменить сложением их модулей. Так как все элементы проводника перпендикулярны радиусу-вектору (sin =1) и расстояние всех элементов проводника до центра кругового тока одинаково и равно R, то, согласно (110.2),

Следовательно, магнитная индукция поля в центре кругового проводника с током

33. Магнитное поле движущегося заряда. Взаимодействие параллельных проводников с током.

Каждый проводник с током создает в окружающем пространстве магнитное поле. Электрический же ток представляет собой упорядоченное движение электрических зарядов. Поэтому можно сказать, что любой движущийся в вакууме или среде заряд создает вокруг себя магнитное поле. В результате обобщения опытных данных был установлен закон, определяющий поле В точечного заряда Q, свободно движущегося с нерелятивистской скоростью v. Под свободным движением заряда понимается его движение с постоянной скоростью. Этот закон выражается формулой

(113.1)

где r — радиус-вектор, проведенный от заряда Q к точке наблюдения М (рис. 168). Согласно выражению (113.1), вектор В направлен перпендикулярно плоскости, в кото­рой расположены векторы v и r, а именно: его направление совпадает с направлением поступательного движения правого винта при его вращении от v к r.

Модуль магнитной индукции (113.1) вычисляется по формуле

(113.2)

где — угол между векторами v и r.

Сравнивая выражения (110.1) и (113.1), видим, что движущийся заряд по своим магнитным свойствам эквивалентен элементу тока:

Закон Био Савара Лапласа формула, формулировка

Закон Био Савара Лапласа определяет величину модуля вектора магнитной индукции в точке выбранной произвольно находящейся в магнитном поле. Поле при этом создано постоянным током на некотором участке.

Формулировка закона Био Савара Лапласа имеет вид: При прохождении постоянного тока по замкнутому контуру, находящемуся в вакууме, для точки, отстоящей на расстоянии r0, от контура магнитная индукция будет иметь вид.

где I ток в контуре

гамма контур, по которому идет интегрирование

r0 произвольная точка

Возьмём элементарный участок проводника с током dl, он будет создавать в некоторой точке индукцию магнитного поля dB. dl это элементарный вектор направление, которого совпадает с направлением тока в контуре. r радиус вектор, направленный от dl к точке наблюдения. А вектор dB направлен перпендикулярно элементарному участку проводника dl и одновременно перпендикулярно радиус вектору r.

То есть, проще говоря, элементарный вектор индукции dB направлен перпендикулярно плоскости образованной вектором dl и r. А его направление совпадает с направлением касательной к магнитной индукции. Определить это направление можно с помощью правила правого винта. Применяется оно таким образом.

В случае если поступательное движение винта направлено в сторону движения тока, то направление вращения головки винта указывает направление dB.

где альфа это угол между векторами элементарного участка цепи dl и радиус-вектором r.

§ 4.5. ЗАКОН БИО-САВАРА-ЛАПЛАСА

4.33). Опыт показывает, что так и есть на самом деле.
Элемент тока
Считаем проводники тонкими. Это означает, что диаметры всех проводников много меньше расстояний до точки, где определяется магнитная индукция. Тогда любой проводник можно представить как совокупность элементов тока АI пре-небрежимо малой толщины. Элемент АІ — это вектор, направ-ленный по току в проводнике (см. рис. 4.33).

Каждый элемент тока AI создает свое магнитное поле в точке А. Результирующее поле в точке, как следует из принципа суперпозиции полей, — это векторная сумма полей, созданных отдельными элементами тока.? Трудности задачи
В опытах с постоянными токами мы всегда имеем дело с токами замкнутыми, следовательно, с полями, создаваемыми всеми элементами тока. Нам же нужен закон, определяющий магнитную индукцию, созданную одним элементом тока. Только такой закон может иметь общее значение. Для каждого конкретного замкнутого проводника с током магнитная индукция зависит от формы проводника, а таких форм может быть бесчисленное множество. Никакой общей закономерности для поля в точке здесь усмотреть нельзя. Точно так же основной закон электростатики — закон Кулона — формулируется для точечных зарядов.
Зная магнитную индукцию АВ, созданную элементом тока, можно вычислить индукцию В любого тока в любой точке пространства.
Но нахождение закона для АВ сразу же наталкивается на трудности. Нельзя создать элемент тока (незамкнутый постоянный ток). Прямой способ экспериментального нахождения закона для АВ, как в случае электростатических взаимодействий, здесь невозможен. Однако такой закон все же удалось установить. Непосредственно из опыта следует, что во всех случаях магнитная индукция В — I. Отсюда можно предположить, что и АВ

I.
Далее, эксперименты французских физиков Ж. Био и Ф. Са- вара показали, что индукция магнитного поля, созданного прямым током, на расстоянии d, много меньшем длины проводника, пропорциональна ^ . Направление АВ определяется
по правилу буравчика (см. § 3).
Отсюда следует, что для АВ нужно найти такой закон, который при суммировании по всем элементам прямого провода давал бы найденную экспериментально зависимость от I и d. Это удалось сделать П. Лапласу. Отыскивая простейшую формулу, приводящую к известному результату, он получил требуемый закон.
Найденную Лапласом формулу для АВ следует рассматривать как обобщение опытных фактов. Уверенность в ее справедливости вытекает не из ее «вывода», а из того, что все расчеты полей любых замкнутых токов на ее основе приводят к правильным результатам, согласующимся с опытом.

Рис. 4.34
Закон Био—Савара—Лапласа
Теперь мы запишем выражение для модуля магнитной индукции АВ поля, созданного элементом тока АI в точке пространства Л на расстоянии г от АI (рис. 4.34). Угол между радиусом-вектором г и А1 обозначим через а. Сила тока равна I. Согласно закону Био—Савара—Лапласа
IAlsina .
5—. (4.5.1)
AB = k
1
Здесь k^ — коэффициент пропорциональности, зависящий от выбора системы единиц. (Системами единиц мы займемся в дальнейшем.) Направлен вектор АВ перпендикулярно плоскости, содержащей векторы А1 и г.

Если вращать рукоятку буравчика от А1 к г в направлении наименьшего угла между этими векторами, то поступательное перемещение буравчика укажет направление вектора АВ. В случае, изображенном на рисунке 4.34, вектор АВ направлен перпендикулярно чертежу от нас.
Векторное произведение
Закон Био—Савара—Лапласа можно записать в векторной форме, используя понятие векторного произведения двух векторов. Это понятие у нас еще не встречалось. В физике многие величины выражаются через векторные произведения. Векторное произведение используется не менее часто, чем скалярное, о котором шла речь в «Механике» (см. § 6.2). Для обозначения векторного произведения двух векторов а и b применяется косой крест: с = a xb. Если в ре-зультате скалярного произведения двух векторов получается скаляр, то результатом векторного произведения векторов яв-ляется вектор (отсюда и его название). Определяется вектор-ное произведение так.
Модуль с векторного произведения векторов а и b равен произведению их модулей на синус угла а между ними (рис. 4.35):
с = \а х b\ = ab sin а. (4.5.2)
Направление векторного произведения задается правилом правого буравчика (или винта). Если рукоятку буравчика поворачивать на наименьший угол от вектора а, стоящего первым в векторном произведении, к вектору Ъ, то вектор с направлен в сторону поступательного перемещения буравчика. Таким образом, вектор с перпендикулярен плоскости, содержащей векторы aub.
Конечно, нужно еще доказать, что направленный отрезок с является вектором, т. е. для векторного произведения выполняется геометрическое правило сложения векторов. Но мы это делать не будем. Не будем также приводить выражения для проекций векторного произведения на оси координат. Эти вы-ражения довольно сложны, и в дальнейшем мы не будем их использовать.
Отметим лишь, что векторное произведение некоммутативно:
ахЪ = -Ъха. (4.5.3)
Это следует из определения направления векторного произведения.

Закон Био—Савара—Лапласа в векторной форме
Используя понятие векторного произведения, закон Био— Савара—Лапласа можно записать в векторной форме. В этом случае сразу будет определен и модуль вектора магнитной индукции АВ и его направление:
AB = kx «Ье- . (4.5.4)
г
Модуль магнитной индукции
. „ , I Air sin а , /AZsina
АВ = кг j = 2 ‘
г г
как это и должно быть согласно закону (4.5.1). Направление АВ также определено правильно.
Магнитная индукция прямого тока AL

Рис. 4.36
Для вычисления магнитной индукции бесконечно длинного прямого провода в произвольной точке А, находящейся на расстоянии d от провода, нужно просуммировать векторы ДВ. магнитных индукций, создаваемых отдельными элементами тока Alt (рис. 4.36). Суммирование упрощается благодаря тому, что векторы ДВг от отдельных элементов тока направлены в одну сторону — перпендикулярно рисунку от нас. Тем не менее вычисления требуют умения находить сумму бесконечно большого числа бесконечно малых членов. Этот способ вычисления называется интегрированием. Мы приведем конечный результат:
B = (4.5.5)
Формула (4.5.5) дает правильное значение магнитной индукции и для прямого провода конечной длины. Необходимо только, чтобы расстояние d было много меньше длины провода и точка, в которой определяется индукция поля, находилась на большом расстоянии от концов провода.
Установлен закон Био—Савара—Лапласа, определяющий магнитную индукцию элемента тока.

Напряженность магнитного поля. Элемент тока. Закон-Био-Савара-Лапласа. Расчет напряженности магнитного поля кругового витка с током на его оси.

Напряженностью магнитного поля называется отношение механической силы, действующей на положительный полюс пробного магнита, к величине его магнитной массы или механическая сила, действующая на положительный полюс пробного магнита единичной массы в данной точке поля.

Напряженность изображается вектором H , имеющим направление вектора механической силы f .

Элемент тока — векторная величина, равная произведению тока проводимости вдоль линейного проводника и бесконечно малого отрезка этого проводника.

Примечание. Элемент тока имеет направление, совпадающее с направлением этого отрезка.

Закон Био—Савара—Лапласа — физический закон для определения вектора индукции магнитного поля, порождаемого постоянным электрическим током.

Круговой проводник с током.

Возьмем проводник, согнутый по кругу в виде витка, и пропустим по нему ток (рис. 75). Из чертежа видно, что магнитные линии замыкаются вокруг проводника с током и имеют форму ок­ружностей. Магнитные линии с одной стороны входят в плоскость кругового проводника, с другой — выходят.

Направление поля круго­вого тока можно определить, пользуясь «правилом бурав­чика».

Буравчик нужно расположить по оси кругового тока перпендикулярно его плоскости. Если теперь вращать ручку буравчика по направлению тока в контуре, то поступательное движение буравчика покажет направление магнит­ного поля. Напряженность магнитного поля в центре витка с током определяется по формуле:

Закон Био Савара Лапласа

Закон Био Савара Лапласа — Магнитное поле любого тока может быть вычислено как векторная сумма полей, создаваемая отдельными участками токов.

.

Для магнитного поля, как и для электрического, справедлив принцип суперпозиции: магнитная индукция результирующего поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме магнитных индукций складываемых полей, создаваемых каждым током или движущимся зарядом в отдельности:

.

Закон Био-Савара-Лапласа для некоторых токов:

Магнитное поле прямого тока: .

Магнитное поле кругового тока: .

dB — магнитная индукция;

dl — вектор, по модулю равный длине dl элемента проводника и совпадающий по направлению с током;

— магнитная постоянная;

μ — относительная магнитная проницаемость (среды);

I — сила тока;

R — расстояние от провода до точки, где мы вычисляем магнитную индукцию;

α — угол между вектором dl и r.

В современной формулировке закон Био — Савара — Лапласа чаще рассматривают как следствие двух уравнений Максвелла для магнитного поля при условии постоянства электрического поля:

где квадратными скобками обозначено векторное произведение, r — положение точек контура γ, dr — вектор элемента контура (ток течет вдоль него); μ0 — магнитная постоянная; r,r0 — единичный вектор, направленный от элемента контура к точке наблюдения.

В принципе контур γ может иметь ветвления, представляя собой сколь угодно сложную сеть. В таком случае под выражением, приведенным выше, следует понимать сумму по всем ветвям, слагаемое же для каждой ветви является интегралом приведенного выше вида (контур интегрирования для каждой ветви может быть при этом незамкнутым).

В случае простого контура, ток I одинаков на всех участках контура и может быть вынесен за знак интеграла. (Это справедливо отдельно и для каждого неразветвленного участка разветвленной цепи).

Если же взять за точку отсчёта точку, в которой нужно найти вектор магнитной индукции, то формула немного упрощается:

где — вектор, описывающий кривую проводника с током I, r — модуль , — вектор магнитной индукции, создаваемый элементом проводника .

Смотрите еще:

  • Законы про туризм Туризм и право. Сборник законов о туризме Шенгенская виза. Правила оформления. Шенгенская виза. Позволяет гражданам и иностранным туристам свободно перемещаться в пределах шенгенской зоны по одной (один раз выданной) визе. Получение […]
  • Нотариусы березовский свердловская область Консультация нотариуса онлайн поможет разобраться во всех деталях нотариальных процедур и приготовиться к персональному посещению нотариальной конторы для подтверждения документации или совершения иных удостоверительных процедур. […]
  • Штрафы гибдд узнать по фамилии владикавказ Узнать штрафы гибдд по фамилии самара Наш сервис предоставляет услуги по проверке Узнать штрафы гибдд по фамилии самара неоплаченных штрафов ГИБДД. Не можем сразу понять как Узнать гибдд штрафы узнать без регистрации штрафы гибдд по […]
  • Закон джоуля ленца при последовательном соединении Журнал "Квант" Закон Джоуля—Ленца В электрической цепи при прохождении тока происходит ряд превращений энергии. Во внешнем участке цепи работу по перемещению заряда совершают силы стационарного электрического поля и энергия этого поля […]
  • Социальный налог в германии Налоги с заработной платы в Германии При поступлении на работу в любое учреждение Германии каждому принятому сотруднику оформляется карта зарплаты. В ней указываются все налоги работника, а также вычитаемые из дохода социальные выплаты. […]
  • Полная логическая характеристика судимость Логическая характеристика понятий: «хмурый день», «ответчик», «судимость», «Луна». Определение вида простого высказывания Страницы работы Фрагмент текста работы книга, причина, брат, акция, базис, подсудимый, левый, север, минерал, […]
  • Три закона движения планет кеплер Три закона движения планет относительно Солнца были выведены эмпирически немецким астрономом Иоганном Кеплером в начале XVII века. Это стало возможным благодаря многолетним наблюдениям датского астронома Тихо Браге. Первый закон […]
  • Приказы дракуру Отчёты с фронтов Старший сержант Хиллари Вуттон всегда исправно предоставляла своему непосредственному начальству если не ежедневные, то еженедельные отчёты. Их редко читали, а если и открывали, то только затем, чтобы убедиться: инспектор […]