Три закона движения планет кеплер

Три закона движения планет относительно Солнца были выведены эмпирически немецким астрономом Иоганном Кеплером в начале XVII века. Это стало возможным благодаря многолетним наблюдениям датского астронома Тихо Браге.

Первый закон Кеплера. Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.

Второй закон Кеплера (закон равных площадей). Радиус-вектор планеты за равные промежутки времени описывает равновеликие площади. Другая формулировка этого закона: секториальная скорость планеты постоянна.

Третий закон Кеплера. Квадраты периодов обращений планет вокруг Солнца пропорциональны кубам больших полуосей их эллиптических орбит.

Современная формулировка первого закона дополнена так: в невозмущенном движении орбита движущегося тела есть кривая второго порядка – эллипс, парабола или гипербола. В отличие от двух первых, третий закон Кеплера применим только к эллиптическим орбитам. Скорость движения планеты в перигелии: где vc – средняя или круговая скорость планеты при r = a. Скорость движения в афелии: Кеплер открыл свои законы эмпирическим путем. Ньютон вывел законы Кеплера из закона всемирного тяготения. Для определения масс небесных тел важное значение имеет обобщение Ньютоном третьего закона Кеплера на любые системы обращающихся тел.

Здесь необходимо сделать следующее замечание. Для простоты часто говорится, что одно тело обращается вокруг другого, но это справедливо только для случая, когда масса первого тела пренебрежимо мала по сравнению с массой второго (притягивающего центра). Если же массы сравнимы, то следует учитывать и влияние менее массивного тела на более массивное. В системе координат с началом в центре масс орбиты обоих тел будут коническими сечениями, лежащими в одной плоскости и с фокусами в центре масс, с одинаковым эксцентриситетом. Различие будет только в линейных размерах орбит (если тела разной массы). В любой момент времени центр масс будет лежать на прямой, соединяющей центры тел, а расстояния до центра масс r1 и r2 тел массой M1 и M2 соответственно связаны следующим соотношением: r1/r2 = M2/M1. Перицентры и апоцентры своих орбит (если движение финитно) тела также будут проходить одновременно. Третий закон Кеплера можно использовать, чтобы определить массу двойных звезд.

Эллипс определяется как геометрическое место точек, для которых сумма расстояний от двух заданных точек (фокусов F1 и F2) есть величина постоянная и равная длине большой оси: r1 + r2 = |AA´| = 2a. Степень вытянутости эллипса характеризуется его эксцентриситетом е. Эксцентриситет е = ОF/OA. При совпадении фокусов с центром е = 0, и эллипс превращается в окружность. Большая полуось а является средним расстоянием от фокуса (планеты от Солнца): a = (AF1 + F1A’)/2. Так как при движении по эллипсу полная энергия отрицательна, большая полуось больше нуля. Длина малой полуоси b зависит от секториальной скорости тела (т.е. скорости изменения площади, заметаемой радиус-вектором). Круговые орбиты являются вырожденным случаем эллиптических. Записывая второй закон Ньютона, получим, что кинетическая и потенциальная энергия тела на круговой орбите связаны соотношением: 2K = –U. Применяя закон сохранения энергии, легко получить, что K = –E. Т.о. при круговом движении сумма полной и кинетической энергии всегда равна нулю. Элементы орбиты характеризуют форму, размеры и ориентацию в пространстве орбиты небесного тела, а также положение тела на этой орбите. В настоящее время для описания положения планеты или спутника широко используются оскуллирующие элементы.

Важнейшие точки и линии эллипса.

Эллипс определяется как геометрическое место точек, для которых сумма расстояний от двух заданных точек (фокусов F1 и F2) есть величина постоянная и равная длине большой оси: r1 + r2 = |AA´| = 2a. Степень вытянутости эллипса характеризуется его эксцентриситетом е. Эксцентриситет е = ОF/OA. При совпадении фокусов с центром е = 0, и эллипс превращается в окружность. Большая полуось а является средним расстоянием от фокуса (планеты от Солнца): a = (AF1 + F1A’)/2. Она связана с механической энергией тела следующим соотношением: Так как при движении по эллипсу полная энергия отрицательна, большая полуось больше нуля. Длина малой полуоси b зависит от секториальной скорости тела (т.е. скорости изменения площади, заметаемой радиус-вектором): Круговые орбиты являются вырожденным случаем эллиптических. Записывая второй закон Ньютона, получим, что кинетическая и потенциальная энергия тела на круговой орбите связаны соотношением: 2K = –U. Применяя закон сохранения энергии, легко получить, что K = –E. Т.о. при круговом движении сумма полной и кинетической энергии всегда равна нулю. Элементы орбиты характеризуют форму, размеры и ориентацию в пространстве орбиты небесного тела, а также положение тела на этой орбите. В настоящее время для описания положения планеты или спутника широко используются оскуллирующие элементы. Точка орбиты тела, ближайшая к притягивающему центру (фокусу), в общем случае называется перицентром, а наиболее удаленная от него (только у эллипса) – апоцентром. Если притягивающим центром является Земля, то эти точки называются соответственно перигеем и апогеем. Наиболее близкая точка к Солнцу называется перигелий, наиболее удаленная – афелий. Для Луны эти точки будут перилунием (периселением) и аполунием (апоселением), для произвольной звезды – периастром и апоастром. Прямая, соединяющая перицентр с фокусом (большая ось эллипса, ось параболы или действительная ось гиперболы), называется линией апсид. Расстояние от притягивающего центра до перицентра равно АF1 = a (1 – e), до апоцентра – F1A’ = a (1 + e). Среднее расстояние от притягивающего центра до тела, движущегося вокруг него по эллипсу, равно длине большой полуоси.

3.1.3. Законы Кеплера

Первый закон Кеплера . Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.

Второй закон Кеплера ( закон равных площадей ). Радиус-вектор планеты за равные промежутки времени описывает равновеликие площади. Другая формулировка этого закона: секториальная скорость планеты постоянна.

Третий закон Кеплера . Квадраты периодов обращений планет вокруг Солнца пропорциональны кубам больших полуосей их эллиптических орбит.

Современная формулировка первого закона дополнена так: в невозмущенном движении орбита движущегося тела есть кривая второго порядка – эллипс, парабола или гипербола.

В отличие от двух первых, третий закон Кеплера применим только к эллиптическим орбитам.

Скорость движения планеты в перигелии

Кеплер открыл свои законы эмпирическим путем. Ньютон вывел законы Кеплера из закона всемирного тяготения. Для определения масс небесных тел важное значение имеет обобщение Ньютоном третьего закона Кеплера на любые системы обращающихся тел.

В обобщенном виде этот закон обычно формулируется так: квадраты периодов T 1 и T 2 обращения двух тел вокруг Солнца, помноженные на сумму масс каждого тела (соответственно M 1 и M 2) и Солнца ( M ) , относятся как кубы больших полуосей a 1 и a 2 их орбит:

При этом взаимодействие между телами M 1 и M 2 не учитывается. Если пренебречь массами этих тел в сравнении с массой Солнца (т.е. M 1

Три закона Кеплера (эллипсов, площадей, гармонический)

Предположение о равномерном круговом дви­жении планет Солнечной системы не согласовывалось с гелиоцентри­ческой системой мира Н. Коперника, поскольку расхождения между вычисленным и реальным положением планет в определённые проме­жутки времени было значительным. Это противоречие удалось разре­шить выдающемуся немецкому астроному И. Кеплеру. На основании многолетних наблюдений за движением планет, изучения трудов сво­их предшественников Кеплер открыл три закона, названных впослед­ствии его именем.

Первый закон Кеплера, называемый также законом эллипсов, был сформулирован учёным в 1609 г.

Первый закон Кеплера: все планеты Солнечной системы движутся по эллиптическим орбитам, в одном из фокусов которых находится Солнце.

Ближайшая к Солнцу точка P траектории называется перигели­ем, точка A, наиболее удалённая от Солнца, — афелием. Расстоя­ние между афелием и перигелием составляет большую ось эллиптической ор­биты. Половина длины большой оси, полуось a, — это среднее расстояние от планеты до Солнца.

Среднее расстоя­ние от Земли до Солнца называ­ется астрономической единицей (а. е.) и равно 150 млн км.

Форму эллипса, степень его отличия от окружности определяет соотношение c/a, где c — расстояние от центра эллипса до фокуса, a — большая полуось эллипса.

Чем больше это отношение, тем более вы­тянута орбита движения планеты (рис. 37), фокусы находятся дальше друг от друга. Если это отношение равно нулю, то эллипс превра­щается в окружность, фокусы сливаются в одну точку — центр окружности.

Орбиты Земли и Венеры почти круговые, для Земли соотношение c/a составляет 0,0167, для Венеры — 0,0068. Орбиты других планет более сплющенные. Наиболее вытяну­та орбита Плутона, для которого c/a = 0,2488. По эллиптическим орбитам движутся не только планеты вокруг Солнца, но и спутники (естественные и искус­ственные) вокруг планет. Ближайшая к Земле точка движения спут­ника называется перигеем, самая удалённая — апогеем.

Второй закон Кеплера (закон площадей): радиус-вектор планеты описывает в равные промежутки времени равные площади.

На рисунке 38 проиллюстрирован второй закон Кеплера. Из рисунка понятно, что радиус-вектор — это отрезок, соединяющий фокус орбиты (по сути, центр Солнца) и центр планеты в любой точке её движения по орби­те. В соответствии со вторым законом Кепле­ра площади выделенных цветом секторов рав­ны между собой. Тогда получается, что за оди­наковый промежуток времени планета проходит по орбите разное расстояние, т. е. скорость движения не постоянна: v2 > v1. Чем ближе планета к перигелию, тем быстрее её движение, будто она стремится скорее уйти подальше от палящих солнечных лучей. Материал с сайта http://doklad-referat.ru

Третий закон Кеплера (гармонический): квадраты периодов обра­щения двух планет вокруг Солнца относятся друг к другу, как кубы больших полуосей их орбит.

Помня, что длина большой полуоси орбиты считается средним рас­стоянием от планеты до Солнца, запишем математическое выражение третьего закона Кеплера:

где T1, T2 — периоды обращения планет 1 и 2; a1 > a2 — среднее расстояние от планет 1 и 2 до Солнца.

Третий закон Кеплера выполняется как для планет, так и для спутников, с погрешно­стью не более 1 %.

На основании этого закона можно вычис­лить продолжительность года (время полного оборота вокруг Солнца) любой планеты, если известно её расстояние до Солнца. И наобо­рот — по этому же закону можно рассчитать орбиту, зная период обращения.

Три закона движения планет кеплер

В начале XVI века польским астрономом Н. Коперником (1473–1543) обоснована гелиоцентрическая система, согласно которой движения небесных тел объясняются движением Земли (а также других планет) вокруг Солнца и суточным вращением Земли. Теория наблюдения Коперника воспринималась как занимательная фантазия. В XVI в. это утверждение рассматривалось церковью как ересь. Известно, что Дж. Бруно, открыто выступивший в поддержку гелиоцентрической системы Коперника, был осужден инквизицией и сожжен на костре.

Кеплер Иоганн (1571–1630) – немецкий ученый, один из творцов небесной механики. Работы в области астрономии, механики, математики. Используя наблюдения Тихо Браге и свои собственные, открыл законы движения планет (три закона Кеплера). Известен как конструктор телескопа (так называемая зрительная труба Кеплера, состоящая из двух двояковыпуклых линз).

Первый закон Кеплера. Все планеты движутся по эллипсам, в одном из фокусов которого находится Солнце (рис. 7.6).

1.24. Законы Кеплера

В мире атомов и элементарных частиц гравитационные силы пренебрежимо малы по сравнению с другими видами силового взаимодействия между частицами. Очень непросто наблюдать гравитационное взаимодействие и между различными окружающими нас телами, даже если их массы составляют многие тысячи килограмм. Однако именно гравитация определяет поведение «больших» объектов, таких, как планеты, кометы и звезды, именно гравитация удерживает всех нас на Земле.

Гравитация управляет движением планет Солнечной системы. Без нее планеты, составляющие Солнечную систему, разбежались бы в разные стороны и потерялись в безбрежных просторах мирового пространства.

Закономерности движения планет с давних пор привлекали внимание людей. Изучение движения планет и строения Солнечной системы и привело к созданию теории гравитации – открытию закона всемирного тяготения.

С точки зрения земного наблюдателя планеты движутся по весьма сложным траекториям (рис. 1.24.1). Первая попытка создания модели Вселенной была предпринята Птолемеем (

140 г.). В центре мироздания Птолемей поместил Землю, вокруг которой по большим и малым кругам, как в хороводе, двигались планеты и звезды.

Геоцентрическая система Птолемея продержалась более 14 столетий и только в середине XVI века была заменена гелиоцентрической системой Коперника. В системе Коперника траектории планет оказались более простыми. Немецкий астроном И. Кеплер в начале XVII века на основе системы Коперника сформулировал три эмпирических закона движения планет Солнечной системы. Кеплер использовал результаты наблюдений за движением планет датского астронома Т. Браге.

Первый закон Кеплера (1609 г.):

Все планеты движутся по эллиптическим орбитам, в одном из фокусов которых находится Солнце.

На рис. 1.24.2 показана эллиптическая орбита планеты, масса которой много меньше массы Солнца. Солнце находится в одном из фокусов эллипса. Ближайшая к Солнцу точка P траектории называется перигелием , точка A , наиболее удаленная от Солнца – афелием . Расстояние между афелием и перигелием – большая ось эллипса.

Второй закон Кеплера эквивалентен закону сохранения момента импульса. На рис. 1.24.3 изображен вектор импульса тела и его составляющие и Площадь, заметенная радиус-вектором за малое время Δ t , приближенно равна площади треугольника с основанием r Δθ и высотой r :

Здесь – угловая скорость (см. §1.6).

Момент импульса L по абсолютной величине равен произведению модулей векторов и

так как

Из этих отношений следует:

Поэтому, если по второму закону Кеплера то и момент импульса L при движении остается неизменным.

В частности, поскольку скорости планеты в перигелии и афелии направлены перпендикулярно радиус-векторам и из закона сохранения момента импульса следует:

Третий закон Кеплера (1619 г.):

Квадраты периодов обращения планет относятся как кубы больших полуосей их орбит:

или

Третий закон Кеплера выполняется для всех планет Солнечной системы с точностью выше 1 % .

На рис. 1.24.4 изображены две орбиты, одна из которых – круговая с радиусом R , а другая – эллиптическая с большой полуосью a . Третий закон утверждает, что если R = a , то периоды обращения тел по этим орбитам одинаковы.

Несмотря на то, что законы Кеплера явились важнейшим этапом в понимании движения планет, они все же оставались только эмпирическими правилами, полученными из астрономических наблюдений. Законы Кеплера нуждались в теоретическом обосновании. Решающий шаг в этом направлении был сделан Исааком Ньютоном, открывшим в 1682 году закон всемирного тяготения :

Для круговых орбит первый и второй закон Кеплера выполняются автоматически, а третий закон утверждает, что T 2

R 3 , где Т – период обращения, R – радиус орбиты. Отсюда можно получить зависимость гравитационной силы от расстояния. При движении планеты по круговой траектории на нее действует сила, которая возникает за счет гравитационного взаимодействия планеты и Солнца:

R 3 , то

Свойство консервативности гравитационных сил (см. §1.10) позволяет ввести понятие потенциальной энергии . Для сил всемирного тяготения удобно потенциальную энергию отсчитывать от бесконечно удаленной точки.

Потенциальная энергия тела массы m , находящегося на расстоянии r от неподвижного тела массы M , равна работе гравитационных сил при перемещении массы m из данной точки в бесконечность.

Математическая процедура вычисления потенциальной энергии тела в гравитационном поле состоит в суммировании работ на малых перемещениях (рис. 1.24.5).

Закон всемирного тяготения применим не только к точеным массам, но и к сферически симметричным телам . Работа гравитационной силы на малом перемещении есть:

Полная работа при перемещении тела массой m из начального положения в бесконечность находится суммированием работ Δ A i на малых перемещениях:

В пределе при Δ r i → 0 эта сумма переходит в интеграл. В результате вычислений для потенциальной энергии получается выражение

Знак «минус» указывает на то, что гравитационные силы являются силами притяжения.

Если тело находится в гравитационном поле на некотором расстоянии r от центра тяготения и имеет некоторую скорость υ , его полная механическая энергия равна

В соответствии с законом сохранения энергии полная энергия тела в гравитационном поле остается неизменной.

Полная энергия может быть положительной и отрицательной, а также равняться нулю. Знак полной энергии определяет характер движения небесного тела (рис. 1.24.6).

При E = E 1 r max . В этом случае небесное тело движется по эллиптической орбите (планеты Солнечной системы, кометы).

При E = E 2 = 0 тело может удалиться на бесконечность. Скорость тела на бесконечности будет равна нулю. Тело движется по параболической траектории .

При E = E 3 > 0 движение происходит по гиперболической траектории . Тело удаляется на бесконечность, имея запас кинетической энергии.

Законы Кеплера применимы не только к движению планет и других небесных тел в Солнечной системе, но и к движению искусственных спутников Земли и космических кораблей. В этом случае центром тяготения является Земля.

Первой космической скоростью называется скорость движения спутника по круговой орбите вблизи поверхности Земли.

отсюда

Второй космической скоростью называется минимальная скорость, которую нужно сообщить космическому кораблю у поверхности Земли, чтобы он, преодолев земное притяжение, превратился в искусственный спутник Солнца (искусственная планета). При этом корабль будет удаляться от Земли по параболической траектории.

отсюда

Рис. 1.24.7 иллюстрирует космические скорости. Если скорость космического корабля равна υ1 = 7.9·10 3 м/с и направлена параллельно поверхности Земли, то корабль будет двигаться по круговой орбите на небольшой высоте над Землей. При начальных скоростях, превышающих υ1 , но меньших υ2 = 11,2·10 3 м/с , орбита корабля будет эллиптической. При начальной скорости υ2 корабль будет двигаться по параболе, а при еще большей начальной скорости – по гиперболе.

ЗАКОНЫ КЕПЛЕРА

Научно-технический энциклопедический словарь .

Смотреть что такое «ЗАКОНЫ КЕПЛЕРА» в других словарях:

законы Кеплера — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN Kepler s laws … Справочник технического переводчика

ЗАКОНЫ КЕПЛЕРА — три закона движения планет, которые являются следствием ньютоновского закона всемирного тяготениями.). Первый закон: каждая планета движется по эллиптической орбите, в одном из фокусов которой находится Солнце. Второй закон: планета движется по… … Большая политехническая энциклопедия

Законы Кеплера — Законы Кеплера три эмпирических соотношения, интуитивно подобранных Иоганном Кеплером на основе анализа астрономических наблюдений Тихо Браге. Описывают идеализированную гелиоцентрическую орбиту планеты. В рамках классической механики… … Википедия

Законы Кеплера — три экспериментально установленных закона движения планет Солнечной системы. Первый закон Кеплера. Все планеты движутся по эллиптическим орбитам, в одном из фокусов которых находится Солнце. Второй закон Кеплера. Радиус вектор, проведенный от… … Астрономический словарь

Законы Кеплера — см. Астрономия … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Кеплера законы — три закона движения планет относительно Солнца, установлены как обобщение наблюдательных данных И. Кеплером в начале XVII в. 1 й : каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце. 2 й закон Кеплера: каждая планета … Энциклопедический словарь

КЕПЛЕРА ЗАКОНЫ — принципы движения планет, сформулированные в начале 17 в. И. Кеплером (1571 1630) на основе многолетних наблюдений Т. Браге (1546 1601). Они используются в небесной механике и формулируются так: 1. Орбита любой планеты есть эллипс, в одном из… … Энциклопедия Кольера

Законы Ньютона — Классическая механика … Википедия

Кеплера законы движения планет — три закона движения планет, эмпирически открытые немецким астрономом Иоганном Кеплером в начале XVII века. Первый закон: каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце. Второй закон: каждая планета движется в… … Начала современного естествознания

КЕПЛЕРА ЗАКОНЫ — три закона движения планет, открытые нем. астрономом И. Кеплером (J. Kepler) в нач. 17 в. Ниже приведены их совр. формулировки. 1 й закон: при невозмущённом движении (в двух тел задаче) орбита движущейся матер. точки (планеты) есть кривая второго … Физическая энциклопедия

Законы движения Кеплера

Иоганн Кеплер и планеты Солнечной системы

Астрономия конца XVI века отмечает столкновение двух моделей нашей Солнечной системы: геоцентрическая система Птолемея – где центром вращения всех объектов является Земля, и гелиоцентрическая система Коперника – где Солнце является центральным телом.

Модель Солнечной системы Клавдия Птолемея

И хотя Коперник был ближе к истинной природе Солнечной системы, его работа имела недостатки. Основным из этих недостатков являлось утверждение, что планеты вращаются вокруг Солнца по круговым орбитам. С учетом этого, модель Коперника практически настолько же не согласовывалась с наблюдениями, как и система Птолемея. Польский астроном стремился исправить данное расхождение при помощи дополнительного движения планеты по кругу, центр которого уже двигался вокруг Солнца — эпицикл. Однако, расхождения в большей своей части не были устранены.

В начале XVII века немецкий астроном Иоганн Кеплер, изучая систему Николая Коперника, а также анализируя результаты астрономических наблюдений датчанина Тихо Браге, вывел основные законы относительно движения планет. Они были названы как Три закона Кеплера.

Первый закон Кеплера

Немецкий астроном пытался различными способами сохранить круговую орбиту движения планет, однако это не позволяло исправить расхождение с результатами наблюдений. Потому Кеплер прибегнул к эллиптическим орбитам. У каждой такой орбиты есть два так называемых фокуса. Фокусы – это две заданные точки, такие, что сумма расстояний от этих двух точек до любой точки эллипса является постоянной.

Иоганн Кеплер отметил, что планета движется по эллиптической орбите вокруг Солнца таким образом, что Солнце располагается в одном из двух фокусов эллипса, что и стало первым законом движения планет.

Первый закон Кеплера

Второй закон Кеплера

Проведем радиус-вектор от Солнца, которое располагается в одном из фокусов эллипсоидной орбиты планеты, к самой планете. Тогда за равные промежутки времени данный радиус-вектор описывает равные площади на плоскости, в которой движется планета вокруг Солнца. Данное утверждение является вторым законом.

Второй закон Кеплера

Третий закон Кеплера

Каждая орбита планеты имеет точку, ближайшую к Солнцу, которое называется перигелием. Точка орбиты, наиболее удаленная от Солнца, называется афелием. Отрезок, соединяющий эти две точки называется большой осью орбиты. Если разделить этот отрезок пополам, то получим большую полуось, которую чаще используют в астрономии.

Основные элементы эллипса

Третий закон движения планет Кеплера звучит следующим образом:

Отношение квадрата периода обращения планеты вокруг Солнца к большой полуоси орбиты этой планеты является постоянным, и также равняется отношению квадрата периода обращения другой планеты вокруг Солнца к большой полуоси этой планеты.

Также иногда записывают другое отношение:

Одна из записей третьего закона

Дальнейшее развитие

И хотя законы Кеплера имели относительно невысокую погрешность (не более 1%), все же они были получены эмпирическим способом. Теоретическое же обоснование отсутствовало. Данная проблема позже была решена Исааком Ньютоном, который в 1682-м году открыл закон всемирного тяготения. Благодаря этому закону удалось описать подобное поведение планет. Законы Кеплера стали важнейшим этапом в понимании и описании движения планет.

Смотрите еще:

  • Вывод закона био-савара Закон Био - Савара - Лапласа и его применение к расчету магнитного поля Магнитное поле постоянных токов различной формы изучалось французскими учеными Ж. Био (1774—1862) и Ф. Саваром (1791—1841). Результаты этих опытов были обобщены […]
  • Полная логическая характеристика судимость Логическая характеристика понятий: «хмурый день», «ответчик», «судимость», «Луна». Определение вида простого высказывания Страницы работы Фрагмент текста работы книга, причина, брат, акция, базис, подсудимый, левый, север, минерал, […]
  • Жертва преступления на английском Секреты английского языка Сайт для самостоятельного изучения английского языка онлайн The Language of Crime Posted on 2015-07-18 by admin in Разговорник // 0 Comments Предлагаем вам несколько слов на тему «преступление» (crime). Лицо, […]
  • Правило преобразования функции ПРЕОБРАЗОВАНИЕ ГРАФИКОВ ФУНКЦИЙ Преобразование графика функции Параллельный перенос вдоль оси OY на A единиц вверх, если А>0, и на |A| единиц вниз, если А 0, на | a| единиц влево, если a 1, и сжатие в 1/ k раз, если 0 1, и растяжение в […]
  • Закон сохранение инерции Задачи по теме: «Момент инерции. Закон сохранения момента инерции и момента импульса» Главная > Документ Задачи по теме: «Момент инерции. Закон сохранения момента инерции и момента импульса». На барабан радиусом R=0,5 м и с […]
  • Штрафы гибдд узнать по фамилии владикавказ Узнать штрафы гибдд по фамилии самара Наш сервис предоставляет услуги по проверке Узнать штрафы гибдд по фамилии самара неоплаченных штрафов ГИБДД. Не можем сразу понять как Узнать гибдд штрафы узнать без регистрации штрафы гибдд по […]
  • Ночь страшного суда 1993 Ночь страшного суда (1993) Judgment Night Продолжительность: 110 мин. Жанр:Боевик , Триллер , Криминал . Страна:США, Япония. Кинокомпании:Universal, Largo. Слоган: "In a deadly game of cat and mouse, they must fight to […]
  • Выдача удостоверений на право управления самоходными маломерными судами выдача удостоверения - 10 рабочих дней выдача дубликата - 2 рабочих дней при истечения срока действия удостоверения - 3 рабочих дня Как получить услугу онлайн Авторизоваться на портале и пройти по разделу "Заказaть услугу онлайн". […]