Какие законы сохранения выполняются для абсолютно упругого удара

Какие законы сохранения выполняются для абсолютно упругого удара

1.21. Упругие и неупругие соударения

Закон сохранения механической энергии и закон сохранения импульса позволяют находить решения механических задач в тех случаях, когда действующие силы неизвестны. Примером такого рода задач является ударное взаимодействие тел.

С ударным взаимодействием тел нередко приходится иметь дело в обыденной жизни, в технике и в физике (особенно в физике атома и элементарных частиц).

Ударом (или столкновением ) принято называть кратковременное взаимодействие тел, в результате которого их скорости испытывают значительные изменения. Во время столкновения тел между ними действуют кратковременные ударные силы, величина которых, как правило, неизвестна. Поэтому нельзя рассматривать ударное взаимодействие непосредственно с помощью законов Ньютона. Применение законов сохранения энергии и импульса во многих случаях позволяет исключить из рассмотрения сам процесс столкновения и получить связь между скоростями тел до и после столкновения, минуя все промежуточные значения этих величин.

В механике часто используются две модели ударного взаимодействия – абсолютно упругий и абсолютно неупругий удары .

Абсолютно неупругим ударом называют такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.

При абсолютно неупругом ударе механическая энергия не сохраняется. Она частично или полностью переходит во внутреннюю энергию тел (нагревание).

Примером абсолютно неупругого удара может служить попадание пули (или снаряда) в баллистический маятник . Маятник представляет собой ящик с песком массой M , подвешенный на веревках (рис. 1.21.1). Пуля массой m , летящая горизонтально со скоростью попадает в ящик и застревает в нем. По отклонению маятника можно определить скорость пули.

Обозначим скорость ящика с застрявшей в нем пулей через Тогда по закону сохранения импульса

При застревании пули в песке произошла потеря механической энергии:

Отношение M / ( M + m ) – доля кинетической энергии пули, перешедшая во внутреннюю энергию системы:

Эта формула применима не только к баллистическому маятнику, но и к любому неупругому соударению двух тел с разными массами.

При m > М ) отношение

Дальнейшее движение маятника можно рассчитать с помощью закона сохранения механической энергии:

Измеряя на опыте высоту h подъема маятника, можно определить скорость пули υ .

Абсолютно упругим ударом называется столкновение, при котором сохраняется механическая энергия системы тел.

Во многих случаях столкновения атомов, молекул и элементарных частиц подчиняются законам абсолютно упругого удара.

При абсолютно упругом ударе наряду с законом сохранения импульса выполняется закон сохранения механической энергии.

Простым примером абсолютно упругого столкновения может быть центральный удар двух бильярдных шаров, один из которых до столкновения находился в состоянии покоя (рис. 1.21.2).

Центральным ударом шаров называют соударение, при котором скорости шаров до и после удара направлены по линии центров.

В общем случае массы m 1 и m 2 соударяющихся шаров могут быть неодинаковыми. По закону сохранения механической энергии

Здесь υ1 – скорость первого шара до столкновения, скорость второго шара υ2 = 0 , u 1 и u 2 – скорости шаров после столкновения. Закон сохранения импульса для проекций скоростей на координатную ось, направленную по скорости движения первого шара до удара, записывается в виде:

Мы получили систему из двух уравнений. Эту систему можно решить и найти неизвестные скорости u 1 и u 2 шаров после столкновения:

В частном случае, когда оба шара имеют одинаковые массы ( m 1 = m 2 ), первый шар после соударения останавливается ( u 1 = 0 ), а второй движется со скоростью u 2 = υ1 , т. е. шары обмениваются скоростями (и, следовательно, импульсами).

Если бы до соударения второй шар также имел ненулевую скорость ( υ2 ≠ 0 ), то эту задачу можно было бы легко свести к предыдущей с помощью перехода в новую систему отсчета, которая движется равномерно и прямолинейно со скоростью υ2 относительно «неподвижной» системы. В этой системе второй шар до соударения покоится, а первый по закону сложения скоростей имеет скорость υ1 ‘ = υ1 – υ2 . Определив по приведенным выше формулам скорости u 1 и u 2 шаров после соударения в новой системе, нужно сделать обратный переход к «неподвижной» системе.

Таким образом, пользуясь законами сохранения механической энергии и импульса, можно определить скорости шаров после столкновения, если известны их скорости до столкновения.

Центральный (лобовой) удар очень редко реализуется на практике, особенно если речь идет о столкновениях атомов или молекул. При нецентральном упругом соударении скорости частиц (шаров) до и после столкновения не направлены по одной прямой.

Частным случаем нецентрального упругого удара может служить соударение двух бильярдных шаров одинаковой массы, один из которых до соударения был неподвижен, а скорость второго была направлена не по линии центров шаров (рис. 1.21.3).

После нецентрального соударения шары разлетаются под некоторым углом друг к другу. Для определения скоростей и после удара нужно знать положение линии центров в момент удара или прицельное расстояние d (рис. 1.21.3), т. е. расстояние между двумя линиями, проведенными через центры шаров параллельно вектору скорости налетающего шара. Если массы шаров одинаковы, то векторы скоростей и шаров после упругого соударения всегда направлены перпендикулярно друг к другу. Это легко показать, применяя законы сохранения импульса и энергии. При m 1 = m 2 = m эти законы принимают вид:

Первое из этих равенств означает, что векторы скоростей , и образуют треугольник (диаграмма импульсов), а второе – что для этого треугольника справедлива теорема Пифагора, т. е. он прямоугольный. Угол между катетами и равен 90° .

Удар абсолютно упругих и неупругих тел

Примером применения законов сохранения импульса и энергии при решении реальной физической задачи является удар абсолютно упругих и неупругих тел.

Удар (или соударение)—это столкновение двух или более тел, при котором взаимодействие длится очень короткое время. Помимо ударов в прямом смысле этого слова (столкновения атомов или биллиардных шаров) сюда можно отнести и такие, как удар человека о землю при прыжке с трамвая и т. д. Силы взаимодействия между сталкивающимися телами (ударные или мгновенные силы) столь велики, что внешними силами, действующими на них, можно пренебречь. Это позволяет систему тел в процес­се их соударения приближенно рассматривать как замкнутую систему и применять к ней законы сохранения.

Тела во время удара претерпевают деформацию. Сущность удара заключается в том, что кинетическая энергия относительного движения соударяющихся тел на короткое время преобразуется в энергию упругой деформации. Во время удара имеет место перераспределение энергии между соударяющимися телами. Наблюдения пока­зывают, что относительная скорость тел после удара не достигает своего прежнего значения. Это объясняется тем, что нет идеально упругих тел и идеально гладких поверхностей. Отношение нормальных составляющих относительной скорости тел после и да удара называется коэффициентом восстановления e :

Если для сталкивающихся тел e =0, то такие тела называются абсолютно неупругими, если e =1 — абсолютно упругими. На практике для всех тел 0 и (рис. 18). В случае прямого центрального удара векторы скоростей шаров до и после удара лежат на прямой линии, соединяющей их центры. Проекции векторов скорости на эту линию равны модулям скоростей. Их направления учтем знаками: положительное значение припишем движению вправо, отрицатель-нос — движению влево.

При указанных допущениях законы сохранения имеют вид

(15.1)

(15.2)

Произведя соответствующие преобразования в выражениях (15.1) и (15.2), получим

(15.3)

(15.4)

(15.5)

Решая уравнения (15.3) и (15.5), находим

(15.6)

(15.7)

Разберем несколько примеров.

(15.8)

(15.9)

Проанализируем выражения (15.8) в (15.9) для двух шаров различных масс:

а) т12. Если второй шар до удара висел неподвижно ( v 2=0) (рис. 19), то после удара остановится первый шар ( =0), а второй будет двигаться с той же скоростью и в том же направлении, в котором двигался первый шар до удара ( );

б) т1>т2. Первый шар продолжает двигаться в том же направлении, как и до удара, но с меньшей скоростью ( > ) (рис. 20);

в) т1 >т1 (например, столкновение шара со стеной). Из уравнений (15.8) и (15.9) следует, что = – v 1, » 2 m 1 v 1/ m 2 » 0.

2. При т1=т2 выражения (15.6) и (15.7) будут иметь вид

т. е. шары равной массы «обмениваются» скоростями.

Абсолютно неупругий удар — столкновение двух тел, в результате которого тела объединяются, двигаясь дальше как единое целое. Продемонстрировать абсолютно неупругий удар можно с помощью шаров из пластилина (глины), движущихся навстре­чу друг другу (рис. 22).

Если массы шаров т1 и т2, их скорости до удара v 1 и v 2, то, используя закон сохранения импульса, можно записать

где v — скорость движения шаров после удара. Тогда

(15.10)

Если шары движутся навстречу друг другу, то они вместе будут продолжать двигаться в ту сторону, в которую двигался шар, обладающий большим импульсом. В частном случае, если массы шаров равны (т 1 = т 2 ), то

Выясним, как изменяется кинетическая энергия шаров при центральном абсолютно неупругом ударе. Так как в процессе соударения шаров между ними действуют силы, зависящие не от самих деформаций, а от их скоростей, то мы имеем дело с силами, подобными силам трения, поэтому закон сохранения механической энергии не должен соблюдаться. Вследствие деформации происходит «потеря» кинетической энергии, перешедшей в тепловую или другие формы энергии. Эту «потерю» можно определить по разности кинетической энергии тел до и после удара:

Используя (15.10), получаем

Если ударяемое тело было первоначально неподвижно ( v 2 = 0), то

Когда m 2>> m 1 (масса неподвижного тела очень большая), то v > m 2), тогда v » v 1 и практически вся энергия затрачивается на возможно большее перемещение гвоздя, а не на остаточную деформацию стены.

Абсолютно неупругий удар — пример того, как происходит «потеря» механической энергии под действием диссипативных сил.

Законы сохранения энергии и импульса. Упругие и неупругие столкновения.

Закон сохранения импульса

Начну с пары определений, без знания которых дальнейшее рассмотрение вопроса будет бессмысленным.

Сопротивление, которое оказывает тело при попытке привести его в движение или изменить его скорость, называется инертностью.

Мера инертности – масса.

Таким образом можно сделать следующие выводы:

  1. Чем больше масса тела, тем большее оно оказывает сопротивление силам, которые пытаются вывести его из состояния покоя.
  2. Чем больше масса тела, тем большее оно оказывает сопротивление силам, которые пытаются изменить его скорость в случае, если тело движется равномерно.

Резюмируя можно сказать, что инертность тела противодействует попыткам придать телу ускорение. А масса служит показателем уровня инертности. Чем больше масса, тем большую силу нужно применить для воздействия на тело, чтобы придать ему ускорение.

Замкнутая система (изолированная) – система тел, на которую не оказывают влияние другие тела не входящие в эту систему. Тела в такой системе взаимодействуют только между собой.

Если хотя бы одно из двух условий выше не выполняется, то систему замкнутой назвать нельзя. Пусть есть система, состоящая из двух материальных точек, обладающими скоростями и соответственно. Представим, что между точками произошло взаимодействие, в результате которого скорости точек изменились. Обозначим через и приращения этих скоростей за время взаимодействия между точками . Будем считать, что приращения имеют противоположные направления и связаны соотношением . Мы знаем, что коэффициенты и не зависят от характера взаимодействия материальных точек — это подтверждено множеством экспериментов. Коэффициенты и являются характеристиками самих точек. Эти коэффициенты называются массами (инертными массами). Приведенное соотношения для приращения скоростей и масс можно описать следующим образом.

Отношение масс двух материальных точек равно отношению приращений скоростей этих материальных точек в результате взаимодействия между ними.

Представленное выше соотношение можно представить в другом виде. Обозначим скорости тел до взаимодействия как и соответственно, а после взаимодействия — и . В этом случае приращения скоростей могут быть представлены в таком виде — и . Следовательно, соотношение можно записать так — .

Импульс (количество энергии материальной точки) – вектор равный произведению массы материальной точки на вектор ее скорости —

Импульс системы (количество движения системы материальных точек) – векторная сумма импульсов материальных точек, из которых эта система состоит — .

Можно сделать вывод, что в случае замкнутой системы импульс до и после взаимодействия материальных точек должен остаться тем же — , где и . Можно сформулировать закон закон сохранения импульса.

Импульс изолированной системы остается постоянным во времени, независимо от взаимодействия между ними.

Закон сохранения энергии

Консервативные силы – силы, работа которых не зависит от траектории, а обусловлена только начальными и конечными координатами точки.

Формулировка закона сохранения энергии:

В системе, в которой действуют только консервативные силы, полная энергия системы остается неизменной. Возможны лишь превращения потенциальной энергии в кинетическую и обратно.

Потенциальная энергия материальной точки является функцией только координат этой точки. Т.е. потенциальная энергия зависит от положения точки в системе. Таким образом силы , действующие на точку, можно определить так: можно определить так: . – потенциальная энергия материальной точки. Помножим обе части на и получим . Преобразуем и получим выражение доказывающее закон сохранения энергии.

Упругие и неупругие столкновения

Абсолютно неупругий удар – столкновение двух тел, в результате которого они соединяются и далее двигаются как одно целое.

Два шара , с и испытывают абсолютно неупругий дар друг с другом. По закону сохранения импульса . Отсюда можно выразить скорость двух шаров, двигающихся после соударения как единое целое — . Кинетические энергии до и после удара: и . Найдем разность

,

где приведенная масса шаров. Отсюда видно, что при абсолютно неупругом столкновении двух шаров происходит потеря кинетической энергии макроскопического движения. Эта потеря равна половине произведения приведенной массы на квадрат относительной скорости.

Абсолютно упругий удар – столкновение двух тел, в результате которого механическая энергия системы остается прежней.

Два шара , с и до соударения и и после. По закону сохранения импульса и энергии: , . Решением системы может стать и . Это значит, что шары не встретились. Потребуем и и перепишем уравнения в виде: , . Второе уравнение делим почленно на первое и получаем . Решаем систему из двух линейных уравнений и имеем: , .

Столкновение тел. Абсолютно упругий и абсолютно неупругий удары

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На этом уроке мы продолжаем изучать законы сохранения и рассмотрим различные возможные удары тел. Из своего опыта вы знаете, что накачанный баскетбольный мяч хорошо отскакивает от пола, тогда как сдутый – практически не отскакивает. Из этого вы могли сделать вывод, что удары различных тел могут быть разными. Для того чтобы охарактеризовать удары, вводятся абстрактные понятия абсолютно упругого и абсолютно неупругого ударов. На этом уроке мы займемся изучением различных ударов.

Тема: Законы сохранения в механике

Урок: Столкновение тел. Абсолютно упругий и абсолютно неупругий удары

1. Введение

Для изучения строения вещества, так или иначе, используются различные столкновения. Например, для того, чтобы рассмотреть какой-то предмет, его облучают светом, или потоком электронов, и по рассеянию этого света, или потока электронов получают фотографию, или рентгеновский снимок, или изображение данного предмета в каком-либо физическом приборе. Таким образом, столкновение частиц – это то, что окружает нас и в быту, и в науке, и в технике, и в природе.

Например, при одном столкновении ядер свинца в детекторе ALICE Большого Адронного Коллайдера рождаются десятки тысяч частиц, по движению и распределению которых можно узнать о самых глубинных свойствах вещества. Рассмотрение процессов столкновения с помощью законов сохранения, о которых мы говорим, позволяет получать результаты, независимо от того, что происходит в момент столкновения. Мы не знаем, что происходит в момент столкновения двух ядер свинца, но мы знаем, какова будет энергия и импульс частиц, которые разлетаются после этих столкновений.

Сегодня мы рассмотрим взаимодействие тел в процессе столкновения, иными словами движение невзаимодействующих тел, которые меняют свое состояние только при соприкосновении, которое мы называем столкновением, или ударом.

При столкновении тел, в общем случае, кинетическая энергия сталкивающихся тел не обязана быть равной кинетической энергии разлетающихся тел. Действительно, при столкновении тела взаимодействуют друг с другом, воздействуя друг на друга и совершая работу. Эта работа и может привести к изменению кинетической энергии каждого из тел. Кроме того, работа, которую совершает первое тело над вторым, может оказаться неравной работе, которую второе тело совершает над первым. Это может привести к тому, что механическая энергия может перейти в тепло, электромагнитное излучение, или даже породить новые частицы.

Столкновения, при которых не сохраняется кинетическая энергия сталкивающихся тел, называют неупругими.

Среди всех возможных неупругих столкновений, есть один исключительный случай, когда сталкивающиеся тела в результате столкновения слипаются и дальше движутся как одно целое. Такой неупругий удар называют абсолютно неупругим (рис. 1).

а)б)

Рис. 1. Абсолютное неупругое столкновение

Рассмотрим пример абсолютно неупругого удара. Пусть пуля массой летела в горизонтальном направлении со скоростью и столкнулась с неподвижным ящиком с песком массой , подвешенным на нити. Пуля застряла в песке, и дальше ящик с пулей пришел в движение. В процессе удара пули и ящика внешние силы, действующие на эту систему, – это сила тяжести, направленная вертикально вниз, и сила натяжения нити, направленная вертикально вверх, если время удара пули было настолько мало, что нить не успела отклониться. Таким образом, можно считать, что импульс сил, действующих на тело во время удара, был равен нулю, что означает, что справедлив закон сохранения импульса:

.

Условие, что пуля застряла в ящике, и есть признак абсолютно неупругого удара. Проверим, что произошло с кинетической энергией в результате этого удара. Начальная кинетическая энергия пули:

,

конечная кинетическая энергия пули и ящика:

простая алгебра показывает нам, что в процессе удара кинетическая энергия изменилась:

.

Итак, начальная кинетическая энергия пули меньше конечной на некоторую положительную величину. Как же это произошло? В процессе удара между песком и пулей действовали силы сопротивления. Разность кинетических энергий пули до и после столкновения как раз и равны работе сил сопротивления. Другими словами, кинетическая энергия пули пошла на нагрев пули и песка.

Если в результате столкновения двух тел сохраняется кинетическая энергия, такой удар называется абсолютно упругим.

Примером абсолютно упругих ударов могут быть столкновения бильярдных шаров. Мы рассмотрим простейший случай такого столкновения – центральное столкновение.

Центральным называется столкновение, при котором скорость одного шара проходит через центр масс другого шара. (Рис. 2.)

Рис. 2. Центральный удар шаров

Пускай один шар покоится, а второй налетает на него с какой-то скоростью , которая, согласно нашему определению, проходит через центр второго шара. Если столкновение центральное и упругое, то при столкновении возникают силы упругости, действующие вдоль линии столкновения. Это приводит к изменению горизонтальной составляющей импульса первого шара, и к возникновению горизонтальной составляющей импульса второго шара. После удара второй шар получит импульс, направленный направо, а первый шар может двигаться как направо, так и налево – это будет зависеть от соотношения между массами шаров. В общем случае, рассмотрим ситуацию, когда массы шаров различны.

Закон сохранения импульса выполняется при любом столкновении шаров:

.

В случае абсолютно упругого удара, также выполняется закон сохранения энергии:

Получаем систему из двух уравнений с двумя неизвестными величинами. Решив ее, мы получим ответ.

Скорость первого шара после удара равна

,

заметим, что эта скорость может быть как положительной, так и отрицательной, в зависимости от того, масса какого из шаров больше. Кроме того, можно выделить случай, когда шары одинаковые. В этом случае после удара первый шар остановится. Скорость второго шара, как мы ранее отметили, получилась положительной при любом соотношении масс шаров:

.

Наконец, рассмотрим случай нецентрального удара в упрощенном виде – когда массы шаров равны. Тогда, из закона сохранения импульса мы можем записать:

А из того, что кинетическая энергия сохраняется:

Нецентральным будет удар, при котором скорость налетающего шара не будет проходить через центр неподвижного шара (рис. 3). Из закона сохранения импульса, видно, что скорости шаров составят параллелограмм. А из того, что сохраняется кинетическая энергия, видно, что это будет не параллелограмм, а квадрат.

Рис. 3. Нецентральный удар при одинаковых массах

Таким образом, при абсолютно упругом нецентральном ударе, когда массы шаров равны, они всегда разлетаются под прямым углом друг к другу.

Список литературы

  • Г. Я. Мякишев, Б. Б. Буховцев, Н. Н. Сотский. Физика 10. – М.: Просвещение, 2008.
  • А.П. Рымкевич. Физика. Задачник 10-11. – М.: Дрофа, 2006.
  • О.Я. Савченко. Задачи по физике – М.: Наука, 1988.
  • А. В. Пёрышкин, В. В. Крауклис. Курс физики т. 1. – М.: Гос. уч.-пед. изд. мин. просвещения РСФСР, 1957.
  • Дополнительные рекомендованные ссылки на ресурсы сети Интернет

    Домашнее задание

    Решив задачи к данному уроку, вы сможете подготовиться к вопросам 3 ГИА и вопросам А4 ЕГЭ.

    1. Задачи 327, 328, 329, 330 сб. задач А.П. Рымкевич изд. 10 (Источник)

    2. Возьмите два мячика для настольного тенниса. Столкните их, что вы наблюдаете? Проделайте в мячиках отверстия. Столкните их снова. Что изменилось?

    3. Рассмотрите следующие вопросы и ответы на них:

    Список вопросов – ответов:

    Вопрос: Приведите больше примеров абсолютно неупругих ударов. Существуют ли такие удары в природе?

    Ответ: Да, действительно такие удары существуют в природе. Например, если мяч попадает в сетку футбольных ворот, или кусок пластилина выскальзывает из ваших рук и прилипает к полу, или стрела, которая застряла в подвешенной на нитках мишени, или попадание снаряда в баллистический маятник.

    Вопрос: Приведите больше примеров абсолютно упругого удара. Существуют ли они в природе?

    Ответ: В природе не существует абсолютно упругих ударов, поскольку при любом ударе часть кинетической энергии тел тратится на совершение некими сторонними силами работы. Однако иногда мы можем считать некие удары абсолютно упругими. Мы вправе делать это, когда изменение кинетической энергии тела при ударе незначительное по сравнению с этой энергией. Примерами таких ударов может служить баскетбольный мяч, который отскакивает от асфальта, или столкновения металлических шариков. Упругими также принято считать соударения молекул идеального газа.

    Вопрос: Что делать, когда удар частично упругий?

    Ответ: Нужно оценить, какое количество энергии ушло на работу диссипативных сил, то есть таких сил, как сила трения или сила сопротивления. Далее нужно воспользоваться законами сохранения импульса и узнать кинетическую энергию тел после столкновения.

    Вопрос: Как стоит решать задачу о нецентральном ударе шаров, имеющих разные массы?

    Ответ: Стоит записать закон сохранения импульса в векторной форме, и то, что кинетическая энергия сохраняется. Далее, у вас получится система из двух уравнений и двух неизвестных, решив которую, вы сможете найти скорости шаров после столкновения. Однако, следует отметить, что это достаточно сложный и трудоемкий процесс, выходящий за рамки школьной программы.

    Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

    Смотрите еще:

    • Закон от 19122005 163-фз Федеральный закон от 27 июня 2018 г. N 163-ФЗ "О внесении изменений в Федеральный закон "О миграционном учете иностранных граждан и лиц без гражданства в Российской Федерации" Документ является поправкой к Комментарии Российской […]
    • Как исчислить сумму налога на доходы физических лиц Как высчитать НДФЛ из зарплаты Актуально на: 24 января 2018 г. По общему правилу заработная плата облагается НДФЛ по ставке 13% для резидентов и 30% для нерезидентов. И каждый работодатель, будучи налоговым агентом, должен исчислить, […]
    • Осаго если водитель пьян Получение выплаты по ОСАГО при ДТП с пьяным водителем Согласно Правилам дорожного движения (далее – Правила, ПДД) водителю запрещается, при каких бы то ни было обстоятельствах управлять автотранспортным средством в пьяном виде. Это […]
    • Размер пособия по безработице оренбург Сколько платят на бирже труда по безработице Биржа труда – учреждение, входящее в систему государственного регулирования рынка труда. Биржа занимается посредническими функциями, осуществляемыми между работодателями и гражданами, […]
    • Общественное обсуждение закон Статья 24. Общественное обсуждение Статья 24. Общественное обсуждение См. комментарии к статье 24 настоящего Федерального закона 1. Под общественным обсуждением в настоящем Федеральном законе понимается используемое в целях общественного […]
    • Досрочное сокращение как оформить Типичный образец заявления на досрочное увольнение по сокращению штата: как написать этот документ? Бывают случаи, когда при сокращении сотрудников на предприятии часто возникают ситуации, когда одна из сторон трудовых отношений выбирает […]
    • Сапожников адвокат Сапожников Юрий Юрьевич (Юрист) Опытный юрист практик, основное направление деятельности - защита компаний в суде (арбитражный процесс). Юрист специализируется на гражданском, корпоративном, хозяйственном и других отраслях права. Высокая […]
    • Приказ въезд на территорию "Детский сад №8 "Капелька" Муниципальное бюджетное дошкольное образовательное учреждение " Детский сад № 8 « Капелька» Приказ 01.09.2017 г. №30/8 «Об организации пропуска автотранспорта на территорию МБДОУ " Д/с № 8 «Капелька» […]