Закон ома для полной сети

III. Основы электродинамики

Тестирование онлайн

Закон Ома для замкнутой цепи

Замкнутая (полная) электрическая цепь состоит из источника тока и сопротивления.

Источник тока имеет ЭДС () и сопротивление (r), которое называют внутренним. ЭДС (электродвижущая сила) — работа сторонних сил по перемещению положительного заряда по замкнутой цепи (физический смысл аналогичен напряжению, потенциалу). Полное сопротивление цепи — R+r.

1) Напряжение на зажимах источника, а соответственно и во внешней цепи

,
где величина падение напряжения внутри источника тока.

2) Если внешнее сопротивление замкнутой цепи равно нулю, то такой режим источника тока называется коротким замыканием.

Коэффициент полезного действия

Мощность, выделяемая на внешнем участке цепи, называется полезной

При условии R=r мощность, выделяемая во внешней цепи, максимальная для данного источника и равна

Полная мощность — сумма полезной и теряемой мощности

Коэффициент полезного действия источника тока — отношение полезной мощности к полной

Источник ЭДС

Для существования постоянного тока в цепи необходимо непрерывно разделять электрические заряды, которые под действием сил Кулона стремятся соединиться. Для этого необходимы сторонние силы. ЭДС характеризует действие этих сторонних сил. А сама эта работа осуществляется внутри источников ЭДС. Электрические заряды внутри источников ЭДС движутся против кулоновских сил под воздействием сторонних сил.

Сравнивая электрический ток с течением жидкости в трубах, можно сказать, что источник работает, как насос, который подает воду из нижнего резервуара в верхний, из которого она под действием силы тяжести стекает в нижний резервуар.

В быту «источником тока» часто неточно называют любой источник электрического напряжения (батарею, генератор, розетку), но в строго физическом смысле это не так, более того, обычно используемые в быту источники напряжения по своим характеристикам гораздо ближе к источнику ЭДС, чем к источнику тока из-за наличия внутреннего сопротивления.

В настоящее время выпускают множество различных источников ЭДС — от маленьких батареек для часов до генераторов.

Внутри источника тока происходит разделение зарядов из-за процессов, происходящих внутри источника, например, химических процессов.

Гальванический элемент — химический источник тока, основанный на взаимодействии двух металлов и (или) их оксидов в электролите (батарейки, аккумуляторы).

Генераторы — создают ток за счет расходования механической энергии.

Термоэлементы — используют энергию теплового движения заряженных частиц.

Фотоэлементы — создают ток за счет энергии света.

Соединение источников тока*

Рассмотрим n одинаковых источников ЭДС

Правила Кирхгофа**

Для расчета сложных разветвленных цепей, которые нельзя свести к эквивалентной цепи, используют правила Кирхгофа:

1) Алгебраическая сумма сил токов, сходящихся в узле равна нулю.

2) Алгебраическая сумма падений напряжений в любом простом замкнутом контуре равна алгебраической сумме ЭДС, которые есть в этом контуре.

1.8. Электрический ток. Закон Ома

Если изолированный проводник поместить в электрическое поле то на свободные заряды q в проводнике будет действовать сила В результате в проводнике возникает кратковременное перемещение свободных зарядов. Этот процесс закончится тогда, когда собственное электрическое поле зарядов, возникших на поверхности проводника, скомпенсирует полностью внешнее поле. Результирующее электростатическое поле внутри проводника будет равно нулю (см. § 1.5).

Однако, в проводниках при определенных условиях может возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда. Такое движение называется электрическим током . За направление электрического тока принято направление движения положительных свободных зарядов. Для существования электрического тока в проводнике необходимо создать в нем электрическое поле.

Количественной мерой электрического тока служит сила тока I – скалярная физическая величина, равная отношению заряда Δ q , переносимого через поперечное сечение проводника (рис. 1.8.1) за интервал времени Δ t , к этому интервалу времени:

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным .

В Международной системе единиц СИ сила тока измеряется в амперах (А). Единица измерения тока 1 А устанавливается по магнитному взаимодействию двух параллельных проводников с током (см. § 1.16).

Постоянный электрический ток может быть создан только в замкнутой цепи , в которой свободные носители заряда циркулируют по замкнутым траекториям. Электрическое поле в разных точках такой цепи неизменно во времени. Следовательно, электрическое поле в цепи постоянного тока имеет характер замороженного электростатического поля. Но при перемещении электрического заряда в электростатическом поле по замкнутой траектории, работа электрических сил равна нулю (см. § 1.4). Поэтому для существования постоянного тока необходимо наличие в электрической цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения . Такие устройства называются источниками постоянного тока . Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами .

Природа сторонних сил может быть различной. В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов, в генераторах постоянного тока сторонние силы возникают при движении проводников в магнитном поле. Источник тока в электрической цепи играет ту же роль, что и насос, который необходим для перекачивания жидкости в замкнутой гидравлической системе. Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток.

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу.

Физическая величина, равная отношению работы A ст сторонних сил при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС):

Таким образом, ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда. Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В).

При перемещении единичного положительного заряда по замкнутой цепи постоянного тока работа сторонних сил равна сумме ЭДС, действующих в этой цепи, а работа электростатического поля равна нулю.

Цепь постоянного тока можно разбить на отдельные участки. Те участки, на которых не действуют сторонние силы (т. е. участки, не содержащие источников тока), называются однородными . Участки, включающие источники тока, называются неоднородными .

При перемещении единичного положительного заряда по некоторому участку цепи работу совершают как электростатические (кулоновские), так и сторонние силы. Работа электростатических сил равна разности потенциалов Δφ12 = φ1 – φ2 между начальной (1) и конечной (2) точками неоднородного участка. Работа сторонних сил равна по определению электродвижущей силе 12, действующей на данном участке. Поэтому полная работа равна

Величину U 12 принято называть напряжением на участке цепи 1–2. В случае однородного участка напряжение равно разности потенциалов:

Немецкий физик Г. Ом в 1826 году экспериментально установил, что сила тока I , текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению U на концах проводника:

Величину R принято называть электрическим сопротивлением . Проводник, обладающий электрическим сопротивлением, называется резистором . Данное соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.

В СИ единицей электрического сопротивления проводников служит ом (Ом). Сопротивлением в 1 Ом обладает такой участок цепи, в котором при напряжении 1 В возникает ток силой 1 А.

Проводники, подчиняющиеся закону Ома, называются линейными . Графическая зависимость силы тока I от напряжения U (такие графики называются вольт-амперными характеристиками , сокращенно ВАХ) изображается прямой линией, проходящей через начало координат. Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при токах достаточно большой силы наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.

Для участка цепи, содержащего ЭДС, закон Ома записывается в следующей форме:

Это соотношение принято называть обобщенным законом Ома или законом Ома для неоднородного участка цепи .

На рис. 1.8.2 изображена замкнутая цепь постоянного тока. Участок цепи ( cd ) является однородным.

Закон Ома для полной электрической цепи.

Электрическая цепь.

Источник электрического тока, соединенный проводами с различными электроприборами и потребителями электри­ческой энергии, образует электрическую цепь.

Электрическую цепь принято изображать с помощью схем, в которых элементы электрической цепи (сопротивления, источники тока, включатели, лампы, при­боры и т. д.) обозначены специальными значками.

Направление тока в цепи — это направление от положи­тельного полюса источника тока к отрицательному. Это пра­вило было установлено в XIX в. и с тех пор соблюдается. Перемещение реальных зарядов может не совпадать с ус­ловным направлением тока. Так, в металлах носителями тока являются отрицательно заряжен­ные электроны, и движутся они от отрицательного полюса к положительному, т. е. в обратном направлении. В электролитах реальное перемещение зарядов может совпадать или быть противоположным направлению тока, в зависимости от того, какие ионы являются носителями заря­да — положительные или отрицательные.

Включение элементов в электрическую цепь может быть последовательным или параллельным.

Закон Ома для полной цепи.

Рассмотрим электрическую цепь, состоящую из источника тока и ре­зистора R.

Закон Ома для полной цепи устанавливает связь между силой тока в цепи, ЭДС и полным сопротивлением цепи, состоя­щим из внешнего сопротивления R и внутреннего сопротивления источ­ника тока r.

Работа сторонних сил Aст источника тока, согласно определению ЭДС (ɛ) равна Aст = ɛq, где q — заряд, перемещенный ЭДС. Согласно определе­нию тока q = It, где t — время, в течение которого переносился заряд. Отсюда имеем:

Тепло, выделяемое при совершении работы в цепи, согласно закону Джоуля — Ленца, равно:

Закон Ома для замкнутой цепи обычно записывается в виде:

.

Сила тока в полной цепи равна отношению ЭДС цепи к ее полному сопротивлению.

Если цепь содержит несколько последовательно соединенных ис­точников с ЭДС ɛ1, ɛ2, ɛ3 и т. д., то полная ЭДС цепи равна алгебраической сумме ЭДС отдельных источников. Знак ЭДС источника определяется по отношению к направлению обхода контура, который выбирается произвольно, например, на рисунке ниже — против часовой стрелки.

Сторонние силы внутри источника совершают при этом по­ложительную работу. И наоборот, для цепи справедливо следующее уравнение:

В соответствии с сила тока положительна при положительной ЭДС — направление тока во внешней цепи совпадает с направлением обхода контура. Полное сопротивление цепи с несколькими источниками равно сумме внешнего и внутренних сопротивлений всех источников ЭДС, например, для рисунка выше:

Все виды законов Ома

В 1826 году немецкий ученый Георг Ом совершил открытие и описал
эмпирический закон о соотношении между собой таких показателей как сила тока, напряжение и особенности проводника в цепи. Впоследствии, по имени ученого он стал называться закон Ома.

В дальнейшем выяснилось, что эти особенности не что иное, как сопротивление проводника, возникающее в процессе его контакта с электричеством. Это внешнее сопротивление (R). Есть также внутреннее сопротивление (r), характерное для источника тока.

Закон Ома для участка цепи

Согласно обобщенному закону Ома для некоторого участка цепи, сила тока на участке цепи прямо пропорциональна напряжению на концах участка и обратно пропорциональна сопротивлению.

Где U – напряжение концов участка,I– сила тока, R– сопротивление проводника.

Беря во внимание вышеприведенную формулу, есть возможность найти неизвестные значенияUиR, сделав несложные математические операции.

Данные выше формулы справедливы лишь когда сеть испытывает на себе одно сопротивление.

Закон Ома для замкнутой цепи

Сила тока полной цепи равна ЭДС, деленной на сумму сопротивлений однородного и неоднородного участков цепи.

Замкнутая сеть имеет одновременно сопротивления внутреннего и внешнего характера. Поэтому формулы отношения будут уже другими.

Где E – электродвижущая сила (ЭДС), R- внешнее сопротивление источника, r-внутреннее сопротивление источника.

Закон Ома для неоднородного участка цепи

Замкнутая электрическая сеть содержит участки линейного и нелинейного характера. Участки, не имеющие источника тока и не зависящие от стороннего воздействия являются линейными, а участки, содержащие источник – нелинейными.

Закон Ома для участка сети однородного характера был изложен выше. Закон на нелинейном участке будет иметь следующий вид:

I = U/ R = f1 – f2 + E/ R

Где f1 – f2 – разница потенциалов на конечных точках рассматриваемого участка сети

R – общее сопротивление нелинейного участка цепи

ЭДС нелинейного участка цепи бывает больше нуля или меньше. Если направление движения тока, идущего из источника с движением тока в электрической сети, совпадают, будет преобладать движение зарядов положительного характера и ЭДС будет положительная. В случае же совпадения направлений, в сети будет увеличено движение отрицательных зарядов, создаваемых ЭДС.

Закон Ома для переменного тока

При имеющейся в сети емкости или инертности, необходимо учитывать при проводимых вычислениях, что они выдают свое сопротивление, от действия которого ток приобретает переменный характер.

Закон Ома для переменного тока выглядит так:

где Z – сопротивление по всей длине электрической сети. Его еще называют импеданс. Импеданс составляют сопротивления активного и реактивного характера.

Закон Ома не является основным научным законом, а лишь эмпирическим отношением, причем в некоторых условиях оно может не соблюдаться:

  • Когда сеть обладает высокой частотой, электромагнитное поле меняется с большой скоростью, и при расчетах необходимо учитывать инертность носителей заряда;
  • В условиях низкой температуры с веществами, которые обладают сверхпроводимостью;
  • Когда проводник сильно нагревается проходящим напряжением, отношение тока к напряжению становится переменным и может не соответствовать общему закону;
  • При нахождении под высоким напряжением проводника или диэлектрика;
  • В светодиодных лампах;
  • В полупроводниках и полупроводниковых приборах.
  • В свою очередь элементы и проводники, соблюдающие закон Ома, называются омическими.

    Закон Ома может дать объяснение некоторым явлениям природы. Например, когда мы видим птиц, сидящих на высоковольтных проводах, у нас возникает вопрос – почему на них не действует электрический ток? Объясняется это довольно просто. Птицы, сидя на проводах, представляют собой своеобразные проводники. Большая часть напряжения приходится на промежутки между птицами, а та доля, что приходится на сами «проводники» не представляет для них опасности.

    Но это правило работает лишь при единичном соприкосновении. Если птица заденет клювом или крылом провод или телеграфный столб, она неминуемо погибнет от огромного количества напряжения, которое несут в себе эти участки. Такие случаи происходят повсеместно. Поэтому в целях безопасности в некоторых населенных пунктах установлены специальные приспособления, защищающие птиц от опасного напряжения. На таких насестах птицы находятся в полной безопасности.

    Закон Ома также широко применятся на практике. Электричество смертельно опасно для человека при одном лишь касании к оголенному проводу. Но в некоторых случаях сопротивление человеческого тела может быть разным.

    Так, например, сухая и неповрежденная кожа обладает большим сопротивлением к воздействию электричества нежели рана или кожа, покрытая потом. В следствие переутомления, нервного напряжения и опьянения, даже при небольшом напряжении тока человек может получить сильный удар током.

    В среднем, сопротивление тела человека – 700 Ом, значит, для человека является безопасным напряжение в 35 В. Работая с большим напряжением, специалисты используют специальные средства защиты.

    Закон ома для полной сети

    Электронная библиотека

    ЭДС и Закон Ома для полной цепи Сторонние силы. Для поддержания постоянного тока в проводнике требуется поддерживать постоянную разность потенциалов на его концах. Следовательно, в цепи тока должно находиться устройство, в котором движение зарядов происходит в направлении, противоположном направлению этого движения во внешней цепи (от «минуса» к «плюсу»). Те силы, кроме электростатических, которые действуют на заряды и заставляют их двигаться против сил электрического поля, называются сторонними силами. Если бы этих сил в замкнутой цепи не существовало, то работа по перемещению зарядов по замкнутой цепи только за счет электростатических сил равнялась бы нулю. Однако опыт показывает, что в проводнике с током выделяется определенное количество теплоты. Следовательно, должен существовать источник энергии, поддерживающий ток в цепи и восполняющий убыль энергии на нагревание проводника. Знакомый всем пример устройства, поддерживающего постоянный ток в цепи, — батарейка для карманного фонаря, где сторонними силами являются химические силы.

    По определению электродвижущей силой (ЭДС) называется отношение работы сторонних сил Аст по перемещению заряда q к величине этого заряда:

    (11.1)

    Размерность ЭДС совпадает с размерностью напряжения: [E] = В.

    Закон Ома для полной цепи. Любой источник тока обладает, помимо ЭДС, некоторым внутренним сопротивлением r. Полным сопротивлением цепи называют сумму внешнего и внутреннего сопротивлений R + r.

    Согласно закону сохранения энергии, в установившемся режиме прохождения постоянного тока выделяющееся в цепи количество теплоты Q = I2RDt + I2rDt должно быть равно работе сторонних сил в источнике тока. Эту работу за время Dt можно записать в виде Аст = Dq = IDt, где Dq = IDt — количество заряда, перенесенного сторонними силами. Из условия Аст = Q находим E= IR + Ir или

    (11.2)

    Эта формула носит название закона Ома для полной цепи.

    Правила Кирхгофа. Если в цепи произвольным образом (последовательно или параллельно) включено несколько ЭДС и несколько резисторов, то для подсчета полной ЭДС, действующей в цепи, и значения силы тока на отдельных участках следует пользоваться cформулированными Г. Кирхгофом правилами. Прежде всего следует уговориться о направлении тока в цепи. По принятому соглашению ток считается положительным, если его направление соответствует направлению движения положительных зарядов. Второе условие: ток всегда направлен от точки с большим потенциалом к точке с меньшим потенциалом. Разность между значениями потенциала в точках до элемента цепи и после этого элемента называется падением напряжения на элементе цепи. Поэтому при прохождении тока через активное сопротивление U = j1 — j2 > 0 и закон Ома запишется в виде: U = IR.

    Если в цепи имеется более одного контура (т.е. есть элементы, включенные параллельно), то можно определить понятие узла — точки соединения нескольких проводников.

    Правило 1. Сумма токов, входящих в любой узел цепи, равна сумме токов, выходящих из этого узла.

    Правило 2. Сумма падений напряжения на каждом элементе любого замкнутого контура в цепи равна нулю.

    Закон Ома для полной (замкнутой) цепи

    Закон Ома для полной цепи определяет значение тока в реальной цепи, который зависит не только от сопротивления нагрузки, но и от сопротивления самого источника тока. Другое название этого закона — закон Ома для замкнутой цепи. Рассмотрим смысл закона Ома для полной цепи более подробно.

    Потребители электрического тока (например, электрические лампы) вместе с источником тока образуют замкнутую электрическую цепь. На рисунке 1 показана замкнутая электрическая цепь, состоящая из автомобильного аккумулятора и лампочки.

    Рисунок 1. Замкнутая цепь, поясняющея закон Ома для полной цепи.

    Ток, проходящий через лампочку, проходит также и через источник тока. Следовательно, проходя по цепи, ток кроме сопротивления проводника встретит еще и то сопротивление, которое ему будет оказывать сам источник тока (сопротивле­ние электролита между пластинами и сопротивление пограничных слоев электролита и пластин). Следовательно, общее сопротивление замкнутой цепи будет складываться из сопротивления лампочки и сопротивления источника тока.

    Сопротивление нагрузки, присоединенной к источнику тока, принято называть внешним сопротивлением, а со­противление самого источника тока — внутренним со­противлением. Внутреннее сопротивление обозначается буквой r.

    Если по цепи, изображенной на рисунке 1, протекает ток I, то для поддержания этого тока во внешней цепи согласно за­кону Ома между ее концами должна существовать раз­ность потенциалов, равная I*R. Но этот же ток I протекает и по внутренней цепи. Следовательно, для поддержания тока во внутренней цепи, также необходимо существование разности потенциалов между концами сопротивления r. Эта разность потенциалов па закону Ома должна быть равна I*r.

    Поэтому для поддержания тока в цепи электродвижущая сила (ЭДС) аккумулятора должна иметь величину:

    E=I*r+I*R

    Эта формула показывает, что электродвижущая сила в цепи равна сумме внешнего и внутреннего падений напряжения. Вынося I за скобки, получим:

    E=I(r+R)

    I=E/(r+R)

    Две последние формулы выражают закона Ома для полной цепи.

    Закон Ома для полной замкнутой цепи формулируется так: сила тока в замкнутой цепи прямо пропорциональ­на ЭДС в цепи и обратно пропорциональ­на общему сопротивлению цепи.

    Под общим со­противлением подразумевается сумма внешнего и внутреннего сопротивлений.

    ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

    Этот видеоурок доступен по абонементу

    У вас уже есть абонемент? Войти

    На этом уроке мы перейдем от изучения участков цепи к полной цепи. Установим связь между характеристиками источника и параметрами тока, возникающего благодаря этому источнику в цепи.

    Закон Ома для полной цепи

    Из прошлых уроков нам уже знаком закон Ома для участка цепи. Теперь сделаем для этого закона обобщение.

    Определение. Полная цепь – цепь, содержащая источник тока, или же цепь, содержащая ЭДС.

    Для наглядного примера возьмем самый простой вариант – цепь с одним источником и одним потребителем (рис. 1):

    Рис. 1. Пример полной цепи

    Внешняя цепь (участок полной цепи без источника) характеризуется своим сопротивлением – R. Источник же характеризуется своей ЭДС, а также внутренним сопротивлением – r.

    Как уже отмечалось на прошлом уроке, ЭДС равна сумме падений напряжения на внешней цепи и на самом источнике:

    Здесь: – напряжение, подаваемое во внешнюю цепь; – падение напряжения на источнике.

    Внешняя цепь, конечно же, является участком цепи, поэтому для нее справедлив закон Ома:

    Через источник проходит точно такой же ток, поэтому:

    Подставив последние два выражение в первое, получим:

    Это и называется законом Ома для полной цепи.

    Получить закон Ома можно также, если начать рассматривать выполняемую работу. Ведь работа сторонних сил по перемещению заряда состоит из перемещения по внешней цепи плюс разделение зарядов внутри источника:

    Если разделить это выражение на заряд, получим:

    Или же, если вспомнить все определения:

    Вставка 1. Короткое замыкание

    Определение. Короткое замыкание – явление, когда сопротивление во внешней цепи по каким-либо причинам стремится к нулю:

    При этом, обращаясь к закону Ома для полной цепи:

    Ток короткого замыкания из-за того, что внутреннее сопротивление источников очень мало по сравнению с сопротивлением внешним, как правило, чрезвычайно велик. Из-за этого выделяется очень большое количество теплоты, что может стать причиной обрывов цепи, пожаров и т. д. Для предотвращения подобного используются предохранители (рис. 2).

    Рис. 2. Предохранители (Источник)

    Следующий урок будет посвящен решению задач

    Вставка 2. Правила Кирхгофа

    Зачастую при решении задач приходится иметь дело с довольно разветвленными и сложными цепями. И для решения таких задач легко пользоваться так называемыми правилами Кирхгофа, названными в честь немецкого физика Густава Кирхгофа (рис. 3).

    Рис. 3. Густав Кирхгоф (Источник)

    Первое правило Кирхгофа, или правило узлов:

    Узел – точка цепи, где сходится больше двух проводников. Первое правило звучит так: алгебраическая сумма токов, входящих и выходящих из узла, должна равняться нулю:

    Рассмотрим пример (рис. 4):

    Все токи, входящие в узел, будем считать со знаком «+», все выходящие – «–»:

    Второе правило Кирхгофа:

    В любом замкнутом контуре, содержащем ЭДС, алгебраическая сумма падений напряжения равна алгебраической сумме ЭДС:

    Также при использовании правил Кирхгофа необходимо помнить три правила:

    • Направление обхода контуров можно выбирать произвольным
    • При наличии n узлов в цепи необходимо составить уравнение
    • Каждый рассматриваемый контур должен отличаться хотя бы одним элементом от уже рассмотренных

    Список литературы

  • Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) – М.: Мнемозина, 2012.
  • Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. – М.: Илекса, 2005.
  • Мякишев Г.Я., Синяков А.З., Слободсков Б.А. Физика. Электродинамика. – М.: 2010.
  • Дополнительные рекомендованные ссылки на ресурсы сети Интернет

    Домашнее задание

    1. Стр. 106: № 815–820. Физика. Задачник. 10-11 классы. Рымкевич А.П. – М.: Дрофа, 2013. (Источник)
    2. Источник питания имеет ЭДС 6 В и внутреннее сопротивление 0,5 Ом. К нему подключили резистор с сопротивлением 5,5 Ом. Найти силу тока в резисторе и напряжение на клеммах источника.
    3. ЭДС батареи аккумуляторов – 8 В, а внутреннее сопротивление – 0,25 Ом. Найти силу тока короткого замыкания.
    4. *К источнику тока с ЭДС 15 В и внутренним сопротивлением 2,5 Ом подключили реостат. Постройте графики зависимости силы тока в цепи и напряжения от сопротивления реостата.
    5. Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

      Смотрите еще:

      • Штрафы по фамилии пенза Штраф гибдд узнать пенза Удобно и быстро 17 Во время буксировки тут уж безысходность у человека онлайн в Карабулаке Узнать Штраф гибдд узнать пенза задолженность расслабляться раньше времени давайте проверим себя во Штраф гибдд узнать […]
      • Тепловой эффект и закон гесса 2.7. Теплота реакции. Закон Гесса Разрыв и образование химических связей в ходе реакции сопровождается изменением энергии системы. Разница в энергиях связей в продуктах реакции и исходных веществах составляет энергию химической реакции, […]
      • Кто правил в 1842 году Николай Первый Николай I Романов Годы жизни: 1796–1855 Российский император (1825–1855 гг.). Царь Польский и великий князь Финляндский. Из династии Романовых. Третий сын императора Павла I и Марии Федоровны, дочери прусского принца […]
      • Штрафы гибдд по гос номеру нижнекамск Проверка штрафов по гос номеру нижнекамск Субъектом рассматриваемого правонарушения является перевозчик или уполномоченный экономический оператор. Правилам чистота автомобиля законом не оговорена, нужен читаемый номерной знак и все. […]
      • Виды режимов имущества супругов брачный договор раздел имущества Законный и договорной режим имущества супругов Рассмотрим все вопросы, касающиеся законного и договорного имущества супругов. Знакомство с данным материалом внесет полную ясность в понимание как сути этих режимов, так и применения их на […]
      • Закон вина устанавливает связь между Законы лучистого теплообмена Закон Планка устанавливает зависимость между спектральной интенсивностью излучения абсолютно черного тела и абсолютной температурой тела. Под спектральной интенсивностью излучения (интенсивностью излучения) […]
      • Кто правил в россии 1812 года Биография Александра I изначально должна была стать выдающейся. Мало того, что он был старшим сыном императора Павла I и его супруги Марии Фёдоровны, так и бабушка Екатерина II души не чаяла во внуке. Именно она дала мальчику звучное имя […]
      • Нотариус на зорге 56 Город Ростов на Дону входит в число городов-миллионеров на территории России. Как правило, численность крупных городов России напрямую связана с их географическим положением, определившим и дальнейшее политическое и экономическое […]