Правило задачи с процентами

Задачи на проценты

Рассмотрим три основных типа задач на проценты.

Нахождение процента от числа

Чтобы найти процент от числа, нужно число умножить на процент.

Задача № 1569 из учебника «Виленкин 5 класс»

Предприятие изготовило за квартал 500 насосов, из которых 60% имели высшую категорию качества. Сколько насосов высшей категории качества изготовило предприятие?

Найдем 60% от 500 (общее количество насосов).

500 · 0,6 = 300 насосов высшей категории качества.

Ответ: 300 насосов высшей категории качества.

Нахождение числа по его проценту

Чтобы найти число по его проценту, нужно его известную часть разделить на то, сколько процентов она составляет от числа.

Так как задачи «процент по числу» и «число по его проценту» очень похожи и часто не сразу понятно какой тип задачи перед нами, старайтесь внимательно читать текст. Если вам встречаются слова «который», «что составляет» и «который составляет», скорее всего перед вами задача «число по его проценту».

Задача № 1536 из учебника «Виленкин 5 класс»

Ученик прочитал 138 страниц, что составляет 23% числа всех страниц в книге. Сколько страниц в книге?

Итак, нам неизвестно сколько всего страниц в книге. Но мы знаем, что часть, которую прочитал ученик ( 138 страниц) составляет 23% от общего количества страниц в книге.

Так как 138 стр. — это всего лишь часть, само количество страниц, естественно, будет больше 138 . Это поможет нам при проверке.

Проверка: 600 > 138 (это означает, что 138 является частью 600 ).

Ответ: 600 (стр.) — общее количество страниц в книге.

Сколько процентов одно число составляет от другого

Чтобы найти, сколько процентов одно число составляет от другого, нужно ту часть, о которой спрашивается, разделить на общее количество и умножить на 100% .

Задача № 1609 из учебника «Виленкин 5 класс»

Из 200 арбузов 16 оказались незрелыми. Сколько процентов всех арбузов составили незрелый арбузы?

О чем спрашивают? О незрелых арбузах. Значит, 16 делим на общее количество арбузов и умножаем на 100% .

Ответ: 8% — составляют незрелые арбузы от всех арбузов.

Правило задачи с процентами

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно «не очень. »
И для тех, кто «очень даже. » )

Проценты в математике.

Что такое проценты в математике? Как решать задачи на проценты? Эти вопросы всплывают, увы, внезапно… Когда выпускник читает задание ЕГЭ. И ставят его в тупик. А зря. Это очень простые понятия.

Единственно, что нужно запомнить железно – что такое один процент. Это понятие — и есть главный ключ к решению задач на проценты, да и к работе с процентами вообще.

Один процент – это одна сотая часть какого-то числа. И всё. Нет больше никаких мудростей.

Резонный вопрос – а сотая часть какого числа? А вот того числа, о котором идёт речь в задании. Если там говорится о цене, один процент – это одна сотая часть цены. Если о скорости, один процент – это одна сотая часть скорости. И так далее. Понятно, что само число, о котором идёт речь, составляет всегда 100%. А если нет самого числа, то и проценты смысла не имеют…

Другое дело, что в сложных задачах само число так запрячут, что и не найдёшь. Но мы на сложное пока не замахиваемся. Разбираемся с процентами в математике.

Я не зря акцентирую слова один процент, одна сотая. Запомнив, что такое один процент, вы легко найдёте и два процента, и тридцать четыре, и семнадцать, и сто двадцать шесть! Сколько надо, столько и найдёте.

А это, между прочим, основное умение для решения задач на проценты.

Давайте найдём 3% от 400. Сначала найдём один процент. Это будет одна сотая, т.е. 400/100 = 4. Один процент – это 4. А нам сколько процентов надо? Три. Вот и умножаем 4 на три. Получим 12. Всё. Три процента от 400 – это 12.

5% от 20 это будет 20 поделить на 100 (одна сотая – 1%), и умножить на пять (5%):

5% от 20 это будет 1. Всё.

Проще некуда. Давайте-ка быстро, пока не забылось, потренируемся!

Найдите, сколько будет:
5% от 200 рублей.
8% от 350 километров.
120% от 10 литров.
15% от 60 градусов.
4% отличников от 25 учащихся.
10% двоечников из 20 человек.

Ответы (в полном беспорядке): 9, 10, 2, 1, 28, 12.

Эти числа – количество рублей, градусов, учеников и т.д. Я не написал, сколько чего, чтобы решать интересней было…

А если нам нужно записать х% от какого-то числа, например, от 50? Да всё то же самое. Один процент от 50 – это сколько? Правильно, 50/100 = 0,5. А у нас этих процентов – х. Ну и умножим 0,5 на х! Получим, что х% от 50 это – 0,5х.

Надеюсь, что такое проценты в математике вы уяснили. И легко сможете найти любое количество процентов от любого числа. Это просто. Вам сейчас по силам примерно 60% от всех задач на проценты! Уже больше половины. Ну что, добиваем оставшееся? Ладно, как скажете!

В задачах на проценты частенько встречаются обратная ситуация. Нам дают величины (какие угодно), а надо найти проценты. Освоим и этот нехитрый процесс.

3 человека из 120 – это сколько процентов? Не знаете? Ну, тогда, пусть это будет х процентов.

Вычислим х% от 120 человек. В человеках. Это мы умеем. 120 делим на 100 (вычисляем 1%) и умножаем на х (вычисляем х%). Получаем 1,2х.

х процентов от 120 человек, это 1,2х человек. А таких человек у нас три. Остаётся приравнять:

Вспоминаем, что за икс мы брали количество процентов. Значит 3 человека от 120 человек – это 2,5%.

Можно и по-другому. Обойтись простой смекалкой, безо всяких уравнений. Соображаем, во сколько раз 3 человека меньше 120? Делим 120 на 3 и получаем 40. Значит, 3 меньше 120 в 40 раз.

Искомое количество людей в процентах будет во столько же раз меньше 100%. Ведь 120 человек – это и есть 100%. Делим 100 на 40, 100/40 = 2,5

Вот и всё. Получили 2,5%.

Есть ещё способ пропорций, но это, в сущности, то же самое в сокращенном варианте. Все эти способы – правильные. Как вам удобнее, привычнее, понятнее – так и считайте.

Посчитайте, сколько процентов составляют:
3 человека из 12.
10 рублей от 800.
4 учебника из 160 книг.
24 правильных ответа на 32 вопроса.
2 угаданных ответа на 32 вопроса.
9 попаданий из 10 выстрелов.

Ответы (в беспорядке): 75%, 25%, 90%, 1,25%, 2,5%, 6,25%.

В процессе вычислений вы вполне можете столкнуться с дробями. В том числе и неудобными, типа 1,333333… А кто вам велел калькулятором пользоваться? Сами? Не надо. Считайте без калькулятора, как написано в теме «Дроби». Проценты всякие бывают…

Вот мы и освоили переход от величин к процентам и обратно. Можно браться за задачки.

Задачи на проценты.

В ЕГЭ задачи на проценты очень популярны. От самых простых до сложных. В этом разделе мы работаем с простыми задачами. В простых задачах, как правило, нужно перейти от процентов к тем величинам, о которых идёт речь в задаче. К рублям, килограммам, секундам, метрам, и так далее. Или наоборот. Это мы уже умеем. После этого задача становится понятной и легко решается. Не верите? Смотрите сами.
Пусть у нас есть такая задачка.

«Проезд на автобусе стоит 14 рублей. В дни школьных каникул для учащихся ввели скидку 25%. Сколько стоит проезд на автобусе в дни школьных каникул?»

Как решать? Если мы узнаем, сколько 25% в рублях – то и решать-то нечего. Отнимем скидку от исходной цены – и все дела!

Но мы уже умеем это узнавать! Сколько будет один процент от 14 рублей? Одна сотая часть. То есть 14/100 = 0,14 рубля. А таких процентов у нас 25. Вот и умножим 0,14 рубля на 25. Получим 3,5 рублей. Вот и всё. Величину скидки в рублях мы установили, остаётся узнать новую стоимость проезда:

Десять с половиной рублей. Это ответ.

Как только от процентов перешли к рублям, всё стало просто и понятно. Это общий подход к решению задач на проценты.

Понятное дело, не все задачи одинаково элементарны. Есть и посложнее. Подумаешь! Мы и их сейчас порешаем. Сложность в том, что всё наоборот. Нам даны какие-то величины, а найти надо проценты. Например, такая задача:

«Раньше Вася решал правильно две задачи на проценты из двадцати. После изучения темы на одном полезном сайте, Вася стал решать правильно 16 задач из 20. На сколько процентов поумнел Вася? За стопроцентный ум считаем 20 решённых задач.»

Раз вопрос про проценты (а не рубли, килограммы, секунды и т.д.), то и переходим к процентам. Узнаем, сколько процентов Вася решал до поумнения, сколько процентов после – и дело в шляпе!

Считаем. Две задачки из 20 – это сколько процентов? 2 меньше 20 в 10 раз, правильно? Значит, количество задачек в процентах будет в 10 раз меньше, чем 100%. То есть 100/10 = 10.

10%. Да, немного решал Вася… На ЕГЭ делать нечего. Но вот он поумнел, и решает 16 задач из 20. Считаем, сколько это будет процентов? Во сколько раз 16 меньше 20? Навскидку и не скажешь… Придётся делить.

В 5/4 раза. Ну а теперь делим 100 на 5/4:

Вот. 80% это уже солидно. А главное – не предел!

Но это ещё не ответ! Читаем задачу снова, чтобы не ошибиться на ровном месте. Да, нас спрашивают, на сколько процентов поумнел Вася? Ну, это просто. 80% — 10% = 70%. На 70%.

70% — это правильный ответ.

Как видите, в простых задачках достаточно перевести заданные величины в проценты, или заданные проценты – в величины, как всё и проясняется. Ясное дело, что в задачке вполне могут быть и дополнительные навороты. Которые, часто, к процентам отношения и не имеют вовсе. Тут, главное, внимательно условие читать и по шагам, не спеша, разворачивать задачку. Об этом мы в следующей теме поговорим.

Но есть в задачах на проценты одна серьёзная засада! Многие в неё попадают, да… Выглядит эта засада вполне невинно. Например, вот такая задачка.

«Красивая тетрадка летом стоила 40 рублей. Перед началом учебного года, продавец поднял цену на 25%. Однако, тетрадки стали покупать так плохо, что он снизил цену на 10%. Всё равно не берут! Пришлось ему снизить цену ещё на 15%. Вот тут торговля пошла! Какова была окончательная цена тетрадки?»

Ну, как? Элементарно?

Если вы стремительно и радостно дали ответ «40 рублей!», то вы попали в засаду…

Фокус в том, что проценты всегда считаются от чего-то.

Вот и считаем. На сколько рублей продавец взвинтил цену? 25% от 40 рублей — это 10 рублей. То есть, подорожавшая тетрадка стала стоить 50 рублей. Это понятно, да?

А теперь нам надо сбросить цену на 10% от 50 рублей. От 50, а не 40! 10% от 50 рублей – это 5 рублей. Следовательно, после первого удешевления тетрадь стала стоить 45 рублей.

Считаем второе удешевление. 15% от 45 рублей (от 45, а не 40, или 50!) – это 6,75 рубля. Стало быть, окончательная цена тетрадки:

45 – 6,75 = 38,25 рубля.

Как видите, засада заключается в том, что проценты считаются каждый раз от новой цены. От последней. Так бывает практически всегда. Если в задаче на последовательное повышение-понижение величины открытым текстом не сказано, от чего считать проценты, надо считать их от последнего значения. И то, правда. Продавец откуда знает, сколько раз эта тетрадка дорожала-дешевела до него и сколько она стоила в самом начале…

Кстати, теперь вы можете подумать, зачем в задачке про умного Васю написана последняя фраза? Вот эта: «За стопроцентный ум считаем 20 решённых задач»? Вроде и так всё ясно… Э-э-э… Как сказать. Если этой фразы не будет, Вася вполне может посчитать за 100% свои начальные успехи. То есть две решённые задачки. А 16 задач – в восемь раз больше. Т.е. 800% ! Вася сможет вполне оправданно говорить о собственном поумнении аж на 700%!

А ещё можно и 16 задач взять за 100%. И получить новый ответ. Тоже правильный…

Отсюда вывод: самое главное в задачах на проценты – чётко определить, от чего надо считать тот или иной процент.

Это, кстати, и в жизни надо. Там, где проценты используются. В магазинах, банках, на акциях всяких. А то ждёшь 70% скидки, а получаешь 7%. И не скидки, а удорожания… И всё честно, сам просчитался.

Ну вот, представление о процентах в математике вы получили. Отметим самое важное.

1. В задачах на проценты – переходим от процентов к конкретным величинам. Или, если надо – от конкретных величин к процентам. Внимательно читаем задачу!

2. Очень тщательно изучаем, от чего нужно считать проценты. Если об этом не сказано прямым текстом, то обязательно подразумевается. При последовательном изменении величины, проценты подразумеваются от последнего значения. Внимательно читаем задачу!

3. Закончив решать задачу, читаем её ещё раз. Вполне возможно, вы нашли промежуточный ответ, а не окончательный. Внимательно читаем задачу!

Решите несколько задач на проценты. Для закрепления, так сказать. В этих задачках я постарался собрать все главные трудности, которые поджидают решающих. Те грабли, на которые чаще всего наступают. Вот они:

1. Элементарная логика при анализе простых задачек.

2. Правильный выбор величины, от которой нужно считать проценты. Сколько народу споткнулось на этом! А ведь есть оч-ч-чень простое правило.

3. Проценты от процентов. Мелочь, а смущает здорово.

4. И ещё одни вилы. Связь процентов с дробями и частями. Перевод их друг в друга.

«В олимпиаде по математике принимали участие 50 человек. 68% учеников решили мало задач. 75% оставшихся решили средне, а остальные – много задач. Сколько человек решило много задач?»

Подсказка. Если у вас получаются дробные ученики – это неправильно. Читайте внимательно задачу, есть там одно важное слово… Ещё задачка:

«Вася (да-да, тот самый!) очень любит пончики с повидлом. Которые пекут в булочной, через одну остановку от дома. Стоят пончики по 15 рублей за штуку. Имея в наличии 43 рубля, Вася поехал в булочную на автобусе за 13 рублей. А в булочной шла акция «Скидка на всё – 30%. ». Вопрос: сколько дополнительных пончиков не смог купить Вася из-за своей лени (мог бы и пешком прогуляться, правда?)»

На сколько процентов 4 меньше 5?

На сколько процентов 5 больше 4?

Коля устраивался на несложную работу, связанную с расчётом процентов. При собеседовании начальник с хитрой улыбкой предложил Коле два варианта оплаты труда. По первому варианту Коле сразу назначалась ставка 15000 руб в месяц. По второму Коле, если он согласится, первые 2 месяца будут выплачивать пониженную на 50% зарплату. Типа, как новичку. Зато потом увеличат его пониженную зарплату аж на 80%!

Коля посещал один полезный сайт в Интернете. Поэтому, подумав шесть секунд, с лёгкой улыбкой выбрал первый вариант. Начальник улыбнулся в ответ и установил Коле постоянную зарплату в 17000 руб.

Вопрос: Сколько денег в расчёте за год (в тысячах рублей) Коля выиграл на этом собеседовании? Если сравнивать с самым неудачным вариантом? И ещё: что они всё время улыбались-то!?)

Опять короткая задачка.

И снова длинная.)

Скорый поезд №205 «Красноярск — Анапа» сделал остановку на станции «Сызрань-город». Василий и Кирилл пошли в привокзальный магазинчик за мороженым для Лены и гамбургером для себя. Когда они купили всё необходимое, уборщица магазина сообщила, что их поезд уже поехал. Василий и Кирилл быстро-быстро побежали и успели заскочить в вагон. Вопрос: успел бы в этих условиях заскочить в вагон чемпион мира по бегу?
Считаем, что в обычных условиях чемпион мира бежит на 30% быстрее Василия и Кирилла. Однако, стремление догнать вагон (он был последний), угостить Лену мороженым и съесть гамбургер, увеличило их скорость на 20%. А мороженое с гамбургером в руках чемпиона и шлёпанцы на ногах уменьшили бы его скорость на 10%.

А вот задачка без процентов. Интересно, зачем она здесь?)

Определить, сколько весит 3/4 яблока, если всё яблоко весит 200 граммов?

В скором поезде №205 «Красноярск — Анапа» попутчики разгадывали сканворд. Лена отгадала 2/5 всех слов, а Василий отгадал одну треть оставшихся. Затем подключился Кирилл и разгадал 30% всего сканворда! Серёжа отгадал последние 5 слов. Сколько всего слов было в сканворде? Верно ли, что Лена отгадала больше всех слов?

Ответы в традиционном беспорядке и без наименований единиц. Где пончики, где ученики, где рубли с процентами – это вы уж сами…

10; 50; да; 4; 20; нет; 54; 2; 25; 150.

Ну и как? Если всё сошлось — поздравляю! Проценты — не ваша проблема. Можно смело идти работать в банк.)

Что-то не так? Не получается? Не умеете быстро считать проценты от числа? Не знаете очень простых и понятных правил? От чего считать проценты, например? Или, как перевести дроби в проценты?

Тогда вам в Особый раздел 555. Там, в теме «Задачи на проценты», детально разобраны решения всех этих задач. Приведены очень простые и понятные правила работы с процентами. Тем, кто знает эти правила, проценты уже не страшны. Они им симпатичны.)

Если Вам нравится этот сайт.

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Вот здесь можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

А вот здесь можно познакомиться с функциями и производными.

Задача 1. Вода составляет 76% картофеля. Сколько килограммов воды в 35 кг картофеля?

Решение. Вода составляет 76% от 35 кг. По правилу нахождения процентов от данного числа (чтобы найти проценты от данного числа нужно обратить проценты в десятичную или обыкновенную дробь, а затем умножить данное число на эту дробь) получаем 0,76∙35=26,6 кг.

Ответ : в 35 кг картофеля содержится 26,6 кг воды.

Задача 2. В классе 28 учеников. 75% из них занимаются спортом. Сколько учеников в классе занимаются спортом?

Решение. Так как 75%=0,75, то умножая число 28 на дробь 0,75 получаем: 0,75·28=21.

Получается, что 21 человек посещает спортивные кружки.

Ответ : 21 ученик в классе занимается спортом.

Задача 3. В классе 20 человек. Контрольную работу по математике 25% учащихся написали на «5», 35 % написали на «4», 10% всех учащихся получили «2». Сколько пятерок, четверок, троек и двоек получил класс?

Решение. Количество пятерок составляет 25% от 20. По правилу нахождения процентов от данного числа это 0,25∙20=5 учащихся. Четверки получили 35% от 20. Это 0,35∙20=7 учащихся. Двоек 10%. Это 1/10 часть от 20 учащихся, т.е. 2 человека. Остальные учащиеся получили оценку «3». Их 20-5-7-2=6 человек.

Ответ: оценку «5» получило 5 учащихся; оценку «4» получили 7 учащихся; оценку «3» получило 6 учащихся и оценку «2» получили 2 ученика.

Задача 4. В школьной библиотеке 5780 учебников, что составляет 85% всех книг, имеющихся в библиотеке. Сколько всего книг в школьной библиотеке?

Решение. Потребуется найти число по его процентам. Применяем правило нахождения числа по его процентам (чтобы найти число по его процентам нужно обратить проценты в десятичную дробь, а затем разделить данное число на эту дробь). 1) 85%=0,85; 2) 5780:0,85=578000:85=6800 книг.

Ответ: всего в библиотеке 6800 книг.

Задача 5. Токарю нужно было сделать 120 деталей, но он перевыполнил план на 10%. Сколько деталей изготовил токарь?

Решение. 10% от 120 деталей – это одна десятая часть от 120, т.е. это 12 деталей. Токарь изготовил 120+12=132 детали.

Ответ: 132 детали изготовил токарь.

Задача 6. Фирма платит рекламным агентам 5% от стоимости заказа. На какую сумму нужно выполнить заказ, чтобы заработать 2000 рублей?

Решение. 2000 рублей – это 5% от заказа. Число (все его 100%) по его процентам мы найдем по правилу нахождения числа по его процентам. Обращаем 5% в десятичную дробь и делим 2000 на эту дробь. 1) 5%=0,05; 2) 2000:0,05=200000:5=40000.

Ответ: заказ должен быть на сумму 40000 рублей.

Задача 7. После уценки на 10% цена холодильника стала 11430 рублей. Какова была цена холодильника до уценки?

Решение. Имеем: 11430 рублей – это 90% от начальной цены холодильника. Находим число по его процентам. 1) 90%=0,9; 2) 11430:0,9=114300:9=12700 рублей.

Ответ: до уценки холодильник стоил 12700 рублей.

Задача 8. Сколько процентов число 36 составляет от 48?

Решение. По соответствующему правилу: чтобы найти, сколько процентов составляет первое число от второго нужно первое число разделить на второе и результат умножить на 100% — записываем:

Ответ: 75% составляет число 36 от числа 48.

Задача 9. За 1 час станок-автомат изготовлял 240 деталей. После реконструкции этого станка он стал изготовлять в час 288 таких же деталей. На сколько процентов повысилась производительность станка?

Решение. Производительность станка повысилась на 288-240=48 деталей в час. Нужно узнать, сколько процентов от 240 деталей составляют 48 деталей. Для того чтобы узнать, сколько процентов число 48 составляет от числа 240 нужно число 48 разделить на 240 и результат умножить на 100%.

Ответ : производительность станка повысилась на 20%.

Тест 5.8.2. Задачи на проценты. Углы. Круговые диаграммы

Математика. 5 класс. Тест 8. Вариант 2.

1. В школьной библиотеке 3400 книг, из них 2890 учебников. Сколько процентов всех книг составляют учебники?

А) 70%; B) 75%; C) 90%; D) 80%; E) 85%.

2. Автотуристы в первый день проехали 36% всего пути, во второй день 39% всего пути, а в третий день — оставшиеся 200 км. Каков весь путь?

А) 700 км; В) 600 км; С) 800 км; D) 1000 км; Е) 900 км.

3. . на которые точка разбивает прямую, называются дополнительными лучами.

А) отрезки; В) прямые; С) фигуры; D) лучи; Е) стороны.

4. Найти градусные меры / ABC и / MNK.

А) / ABC=135°, / MNK=45°;

B) / ABC=120°, / MNK=45°;

C) / ABC=105°, / MNK=135°;

D) / ABC=45°, / MNK=135°;

E) / ABC=60°, / MNK=135°.

5. Угол АОВ равен 87°. Внутри этого угла проведен луч ОС. Найдите градусную меру угла АОС, если / ВОС=61°.

А) 36°; В) 31°; С) 26°; D) 16°; E) 158°.

6. Решить задачу, составив уравнение. Угол МОК равен 120°. Внутри этого угла проведен луч OD. Угол MOD больше угла DOK на 50°. Сколько градусов содержит угол DOK?

A) 35°; B) 85°; C) 45°; D) 60°; E) 70°.

7. . угол равен половине развернутого угла.

А) тупой; В) острый; С) любой; D) полный; Е) прямой.

8. Сколько градусов содержит угол, если он составляет 3/5 развернутого угла?

А) 45°; В) 72°; С) 135°; D) 120°; Е) 108°.

9. Сколько градусов составляет угол, если он равен 7/15 прямого угла?

А) 54°; В) 36°; С) 60°; D) 42°; Е) 66°.

10. Определить по круговой диаграмме, изображенной на рисунке 1, процентное содержание гвоздик в цветнике. Результат округлить до целых.

А) 38 %;

В) 44%;

С) 17%;

D) 8 %;

Е) 25 %.

11. Используя круговую диаграмму, приведенную на рисунке 2, найти процентное количество корма для животных, получающегося в результате помола пшеницы. Округлить до целых.

А) 4 %;

В) 17 %;

С) 25 %;

D) 80 %;

Е) 60 %.

12. Используя круговую диаграмму, приведенную на рисунке 3, найти в процентах норму пищи, рекомендуемую к употреблению за завтраком. Округлить до целых.

А) 17 %;

В) 10 %;

С) 45 %;

D) 35 %;

Ответы к тестам Вы найдете на странице «Ответы« .

Нужно учиться решать задачи на проценты, так как тема «Проценты» уже никогда не закончится! Приобретайте лучшее наглядное пособие «Как решать задачи на проценты». В электронной книге не только правила и текстовые объяснения, но и обучающие видео (круговым диаграммам в книге также нашлось место!) Посмотреть подробнее можно здесь!

5.6.1. Проценты

Тема «Проценты» станет понятнее с книгой «Как решать задачи на проценты»! Узнать подробнее здесь!

  • Процентом называется одна сотая часть.
  • Чтобы выразить проценты дробью или натуральным числом, нужно число процентов разделить на 100%. (4%=0,04; 32%=0,32).
  • Чтобы выразить число в процентах, нужно его умножить на 100%. (0,65=0,65·100%=65%; 1,5=1,5·100%=150%).
  • Чтобы найти проценты от числа, нужно выразить проценты обыкновенной или десятичной дробью и умножить полученную дробь на данное число.
  • Чтобы найти число по его процентам, нужно выразить проценты обыкновенной или десятичной дробью и разделить на эту дробь данное число.
  • Чтобы найти, сколько процентов составляет первое число от второго, нужно разделить первое число на второе и результат умножить на 100%.
  • Пример 1. Выразить проценты дробью или натуральным числом: 130%, 65%, 4%, 200%.

    1. 130%=130%:100%=130:100=1,3;
    2. 65%=65%:100%=65:100=0,65;
    3. 4%=4%:100%=4:100=0,04;
    4. 200%=200%:100%=200:100=2.

    Пример 2. Записать следующие числа в виде процентов: 1; 1,5; 0,4; 0,03.

  • 1=1·100%=100%;
  • 1,5=1,5·100%=150%;
  • 0,4=0,4·100%=40%;
  • 0,03=0,03·100%=3%.
  • Пример 3. Найти 15% от числа 400.

    Пример 4. Найти число, если 18% его равны 900.

    Пример 5. Определить, сколько процентов составляет число 320 от числа 1600.

    Как решать задачи на проценты в 6 классе

    Предлагаю вашему вниманию легкий способ разобраться, как решать задачи на проценты в 6 классе.

    При решении задачи на проценты первым делом нужно определить вид задачи. Задачи на проценты в 6 классе можно подразделить на три вида:

    Определить вид задачи на проценты можно по записи ее условия. Если напротив 100% стоит число, то это — задача на нахождение процентов от числа. Если число напротив 100% неизвестно, то это — задача на нахождение числа по его процентам. Если же неизвестное значение стоит в колонке процентов, то это — задача на нахождение процентного отношения двух чисел.

    Рассмотрим на примерах, как научиться определять вид задачи на проценты.

    1. Из картофеля выходит 20% крахмала. Сколько крахмала выйдет из 45 т картофеля?

    Это задача на нахождение процентов от числа (так как напротив 100% стоит число).

    2. Руда содержит 67% железа. Сколько нужно руды для получения 13,4 т железа?

    Это задача на нахождение числа по его процентам (так как напротив 100% стоит ?)

    3. Из 400 зерен пшеницы взошло 360. Определить процент всхожести семян.

    Это задача на процентное отношение (так как в колонке процентов стоит ?).

    31 Comments

    Спасибо, вы очень помогли) Хороший сайт, интересный подход к задачам…только…не было бы этих пошлых реклам =

    Уважаемый (ая) ххх! Работа над сайтом требует много сил и времени. Кроме того, нужно оплачивать хостинг и доменное имя. Поэтому хорошо, когда реклама есть.

    Здравствуйте ваш сайт меня спасает , ? у вас есть задачи на 8 — 9 классы ?

    огромное вам спасибо мне завтра cдавать экзамены для поступления в кадетское училище и сайт очень помог я все вспомнил что мы проходили в школе

    Саша, желаю Вам успешной сдачи экзаменов!

    А расскажите, пожалуйста, простой способ, как можно решить подобную задачу:

    Прайс повысился сначала на 7%, а потом еще на 5%. На сколько процентов выросла первоначальная цена?

    Или вот еще такое:
    УСН составляет 6% Как узнать, на сколько процентов нужно увеличить сумму платежа, чтобы полностью компенсировать эти 6% (если просто прибавить к сумме 6%, то и значение для 6% увеличится, а значит сумма «на руки» тоже получится чуть меньше…).

    Мне скоро поступать в финский ВУЗ на бизнес-специальность. Математика была давно. А таких задач в тесте — больше половины ? Вроде, и не сложно. Но я пока не могу сообразить, что к чему.

    Самый простой способ (но это на мой взгляд) — первоначальную цену можно обозначить, к примеру, а. Это 100%. После увеличения на 7% цена составила 107% от первоначальной, то есть 1,07а. После увеличения цены еще на 5% получим 1,05∙1,07а=1,1235а. Разница между новой и первоначальной ценой составляет 1,1235а-а=0,1235. Переводим десятичную дробь в проценты: 0,1235=12,35%. Здесь подробнее.
    Другую задачу завтра посмотрю. Извините, засыпаю. Еще ошибусь где-либо, дети станут возмущаться: «Как вы смеете других учить, а сами ошибки делаете?» ?

    Я для себя решил немного по-другому. В задачах о процентах всегда есть первоначальное число — база (Б), результат изменения (Р) и пропорция — коэффициент изменения базы (к).

    Одно соотношение: Р=Б*к.

    Если база Б уменьшилась на 6%, то к=0,94.

    при известном результате (сумма платежа, допустим 100 единиц) — Р, базу находим так:

    проверка: если от 106,383 вычесть 6%, получится 100.

    Вся беда и путаница в калькуляторах в том, что знак процентов работает только с одним типом задач «нахождение результата при известной базе».
    Так мне кажется.

    Спасибо огромное Вам, Светлана! Дочь проболела все задачи на проценты. Чтобы ей помочь, обратилась к Вашему сайту. Все так понятно и просто! Успехов Вам и удачи во всем!

    Спасибо, Ольга! Желаю здоровья и успехов Вам и дочери!

    спасибо завтра а олимпиаду ехать а я забыл темы много болел отличник но забыл по болезням

    Игорь, желаю Вам здоровья и отличного результата на олимпиаде!

    Здравствуйте Светлана. У меня такая задача сможете помочь с ответом. Гуля весит 42 кг, а Боря 82 кг. Вот вопрос на сколько % Гуля меньше чем Боря . И на скобки % Боря тежелее чем Гуля . У этой задачи 1 ответ должен быть . Или нет .

    Гуля, это две разные задачи.
    1. Так как нужно найти, на сколько процентов вес Гули меньше веса Бори, то 100% здесь — вес Бори (как уровень для сравнения).
    ________кг_______%
    Боря____82____100
    Гуля____42_____х

    1) Составляем пропорцию и решаем её:

    Значит, вес Гуля составляет 51 9/41 % от веса Бори.

    на столько процентов вес Гули меньше веса Бори.
    2. Так как требуется найти, на сколько Боря тяжелее, чем Гуля, в качестве 100% здесь берём вес Гули.
    ________кг_______%
    Гуля____42_____100
    Боря____82______х

    столько процентов составляет вес Бори от веса Гули.

    на столько процентов Боря тяжелее Гули.

    Помогите пожалуйста решить задачку! Мужчина продал машину за 220000 руб, он заработал на ней 20%. за какую сумму он ее купил?

    Первоначальная цена машины составляет 100%. Так как мужчина заработал на продаже 20%, то он продал её за 120% от первоначальной цены.
    ____________руб___________%
    Купил_____х___________100
    Продал___220000____120
    Составляем пропорцию и решаем её:

    За столько рублей мужчина купил машину.

    Помогите пожалуйста с задачей!У Алёши 80 марок, у Бори на 20% больше,а у Вовы на 25% меньше. Сколько марок у Вовы и у Бори в отдельности?

    20% — это 1/5 часть числа. 80:5=16. Значит, у Бори на 16 марок больше, чем у Алёши, то есть у него 80+16=96 марок.
    25% — это 1/4 часть числа. 80:4=20. Следовательно, у Вовы на 20 марок меньше, чем у Алёши, то есть у Вовы 80-20=60 марок.

    доброе утро. Сегодня котрольная,не могу решить такую залачу, помогите пожалуйста. Сплав, который используется при паянии, составляет 58% свинца и 2,5% разных примесей. Остальной сплав — олово. Найдите массу куска этого сплава, если в нем свинца на 22,2 г больше, чем олова.

    Добрый день, Алёша!
    1) 100-(58+2,5)=39,5 (%) сплава составляет олово
    2) 58-39,5=18,5 (%) на столько свинца больше, чем олова.
    3) 22,2:18,5=1,2 (г) в 1%
    4) 1,2∙100=120 (г) масса сплава.

    На покраску куба размером 2×2×2 требуется 2 грамма краски сколько краски потребуется на покраску куба размером 6×6×6

    В 9 раз больше. Но какое отношение Ваш вопрос имеет к решению задач на проценты в 6 классе?

    Последняя задача про краску не дает мне покоя, так как у меня другой ответ. Начинаю в себе сомневаться. Пожалуйста, подтвердите мое решение или опровергните, если не трудно.
    2*2*2=8
    6*6*6=216
    216/8=27 раз
    2г*27=54г
    Заранее благодарна

    Речь идет о площади поверхности куба. Поверхность куба состоит из 6 граней, каждая грань — квадрат со стороной а. Соответственно, площадь поверхности куба вычисляется по формуле S=6a². Для куба с ребром a=2 S=6∙2²=24, для куба с ребром a=6 — S=6∙6²=216. Площадь поверхности увеличилась в 9 раз.

    Светлана Михайловна, спасибо большое!. Меня заклинило на объемах, я поняла.Очень Вам благодарна.

    Задача про веса Бори и Гули очень помогла разобраться, спасибо большое!

    Здравствуйте, Светлана.Решите пожалуйста задачу. Бак автомобиля вмещает 60 л бензина. Сколько литров бензина в баке, если заполнено 55% его объема?

    Это задача на нахождение процентов от числа.
    1) 55%=0,55
    2) 0,55∙60=33(л) бензина в баке.

    ПОМОГИТЕ РЕШИТЬ!!
    В первый день посадили лес на 38% всей площади,во второй день на 32.8 %,а в третий на оставшихся 7.3га.Чему равна площадь отведенная под посадку леса?

    Весь лес — 100%. На третий день посадили 100- (38+32,8)=29,2%. Проще всего решить задачу с помощью пропорции. Примем площадь леса за х:
    х:100=7,3:29,2. Отсюда х=7,3∙100:29,2 и х=25.
    Если пропорцию ещё не изучали — тогда нахождение числа по его процентам: 1)29,2%=0,292; 2) 7,3:0,292=35 (га).

    \(\blacktriangleright\) Чтобы найти, сколько процентов составляет число \(A\) от числа \(B\) , нужно найти \(<\large<\dfrac\cdot 100 \%>>\) .

    \(\blacktriangleright\) Чтобы найти, на сколько процентов число \(A\) больше (меньше) числа \(B\) , нужно найти, сколько процентов составляет число \(A\) от числа \(B\) , а затем из этого количества процентов отнять \(100\%\) (из \(100\%\) отнять найденное количество процентов).

    Заметим, что складывать проценты можно только в том случае, если они взяты от одной и той же величины!

    В \(2015\) году население составляло \(115\%\) по сравнению с предыдущим годом, а в \(2016\) – \(110\%\) по сравнению с предыдущим. Сколько процентов составило население в \(2016\) году по сравнению с \(2014\) годом?

    Т.к. в \(2015\) году задан процент относительно \(2014\) , а в \(2016\) – относительно \(2015\) , то нельзя сказать, что в \(2016\) году население составило \(115\%+110\%\) .
    Решим задачу правильно. Пусть \(x\) – количество людей в \(2014\) году.
    в \(2015\) : \(1,15x\) человек
    в \(2016\) : \(1,1\cdot(1,15x)=1,265x\) .
    Т.е. население в \(2016\) составило \(126,5\%\) по сравнению с \(2014\) годом.

    В государстве \(\pi\) в 2012 году ЕГЭ по математике не сдали 20000 выпускников. В 2013 году число не сдавших уменьшилось на 5 \(\%\) , а в 2014 году – увеличилось на 17 \(\%\) по сравнению с 2013 годом. Сколько выпускников не сдали ЕГЭ по математике в 2014 году в государстве \(\pi\) ?

    В 2013 году число не сдавших составило \(100\%-5\%=95\%\) от числа не сдавших в 2012 году, тогда в 2013 году не сдали ЕГЭ по математике \[20000 \cdot \dfrac<95> <100>= 19000 \ \text<выпускников>.\] В 2014 году число не сдавших составило \(100\%+17\%=117\%\) от числа не сдавших в 2013 году, тогда в 2014 не сдали ЕГЭ по математике \[19000 \cdot \dfrac<117> <100>= 22230\ \text<выпускника>.\]

    В государстве \(\nabla\) в 2014 году ЕГЭ по физике не сдали 1500 выпускников. В 2015 году число не сдавших выросло на 10 \(\%\) , а в 2016 году – увеличилось на 34 \(\%\) по сравнению с 2015 годом. Сколько выпускников не сдали ЕГЭ по физике в 2016 году в государстве \(\nabla\) ?

    В 2015 году число не сдавших составило \(100\%+10\%=110\%\) от числа не сдавших в 2014 году, тогда в 2015 году не сдали ЕГЭ по физике \[1500 \cdot \dfrac<110> <100>= 1650\ \text<выпускников>.\] В 2016 году число не сдавших составило \(100\%+34\%=134\%\) от числа не сдавших в 2015 году, тогда в 2016 не сдали ЕГЭ по физике \[1650 \cdot \dfrac<134> <100>= 2211\ \text<выпускников>.\]

    Продолжаем изучать элементарные задачи по математике. Данный урок посвящен задачам на проценты. Мы рассмотрим несколько задач, а также затронем те моменты, которые не упоминали ранее при изучении процентов, посчитав что на первых порах они создают трудности для обучения.

    В большинстве случаев, задачи на проценты сводятся к тому, чтобы найти процент от числа, найти число по проценту, выразить в процентах какую-либо часть, либо выразить в процентном соотношении взаимосвязь между несколькими объектами, числами, величинами.

    Способы нахождения процента

    Процент можно находить различными способами. Самый популярный способ — разделить число на 100 и умножить полученный результат на искомое количество процентов. Например, чтобы найти 60% от 200 рублей, нужно сначала эти 200 рублей разделить на сто равных частей

    Когда мы делим число на 100, мы тем самым находим один процент от этого числа. Так, разделив 200 рублей на 100 частей, мы автоматически нашли 1% от двухсот рублей, то есть узнали сколько рублей приходится на одну часть. Как видно из примера, на одну часть (на один процент) приходится 2 рубля.

    1% от 200 рублей — 2 рубля

    Зная сколько рублей приходится на одну часть (на 1%), мы можем узнать сколько рублей приходится на две части, на три, на четыре, на пять. То есть, можем найти любое количество процентов. Для этого достаточно умножить эти 2 рубля на искомое количество частей (процентов). Давайте найдём шестьдесят частей (60%)

    2 × 60 = 120 рублей

    2 × 5 = 10 рублей

    2 × 90 = 180 рублей

    2 × 100 = 200 рублей

    100% это все сто частей и они составляют все 200 рублей.

    Второй способ заключается в том, чтобы представить проценты в виде обыкновенной дроби и найти эту дробь от того числа, откуда требуется найти процент. Например найдем те же 60% от 200 рублей. Сначала представим 60% в виде обыкновенной дроби. 60% это шестьдесят частей из ста, то есть шестьдесят сотых:

    Теперь задание можно понимать как «найти от 200 рублей». Это нахождение дроби от числа, которое мы изучали ранее. Напомним, что для того, чтобы найти дробь от числа, нужно это число разделить на знаменатель дроби и полученный результат умножить на числитель дроби

    Третий способ заключается в том, чтобы процент представить в виде десятичной дроби и умножить число на эту десятичную дробь. Например, найдем те же 60% от 200 рублей. Для начала представляем 60% в виде дроби. 60% процентов это шестьдесят частей из ста

    Выполним деление в этой дроби. Перенесем запятую в числе 60 на две цифры влево

    Теперь находим 0,60 от 200 рублей. Для нахождения десятичной дроби от числа, нужно это число умножить на десятичную дробь

    200 × 0,60 = 120 рублей

    Приведенный способ нахождения процента является наиболее удобным, особенно если человек привык пользоваться калькулятором. Этот способ позволяет найти процент в одно действие.

    Как правило выразить процент в десятичной дроби не составляет особого труда. Достаточно приписать «ноль целых» перед процентной долей, если процентная доля представляет собой двузначное число, или приписать «ноль целых» и еще один ноль, если процентная доля представляет собой однозначное число. Примеры:

    60% = 0,60 — приписали ноль целых перед число 60, поскольку число 60 является двузначным

    6% = 0,06 — приписали ноль целых и еще один ноль перед числом 6, поскольку число 6 является однозначным.

    При делении на 100 мы воспользовались методом передвижения запятой на две цифры влево. В ответе 0,60 ноль, стоящий после цифры 6 сохранился. Но если выполнить это деление уголком, ноль исчезает — получается ответ 0,6

    Надо помнить, что десятичные дроби 0,60 и 0,6 равны и несут одно и тоже значение

    В том же «уголке» можно продолжать деление бесконечно, каждый раз приписывая к остатку ноль, но это будет бессмысленным действием

    Выражать проценты в виде десятичной дроби можно не только делением на 100, но и умножением. Значок процента (%) сам по себе заменяет собой множитель 0,01. А если учитывать, что число процентов и значок процента записаны слитно, то между ними располагается «невидимый» знак умножения (×).

    Так, к примеру 45% на самом деле выглядят следующим образом

    Заменим знак процента на множитель 0,01

    Данное умножение на 0,01 выполнятся путем перемещения запятой на две цифры влево

    Задача 1. Бюджет семьи составляет 75 тыс. рублей в месяц. Из них 70% — деньги, заработанные папой. Какую часть заработала мама?

    Всего процентов 100. Если папа заработал 70% денег, то остальные 30% денег заработала мама.

    Задача 2. Бюджет семьи составляет 75 тыс. рублей в месяц. Из них 70% — деньги, заработанные папой, а 30% — деньги, заработанные мамой. Сколько денег заработал каждый?

    Найдем 70 и 30 процентов от 75 тыс. рублей. Так мы определим сколько денег заработал каждый. Для удобства 70% и 30% запишем в виде десятичных дробей

    75 × 0,70 = 52,5 (тыс. руб. заработал папа)

    75 × 0,30 = 22,5 (тыс. руб. заработала мама)

    Проверка

    Ответ: 52,5 тыс. руб. заработал папа, 22,5 руб. заработала мама.

    Задача 3. При остывании хлеб теряет до 4% своей массы в результате испарения воды. Сколько килограммов испарится при остывании 12 тонн хлеба.

    Решение

    Переведем 12 тонн в килограммы. В одной тонне тысяча килограмм, в 12 тоннах в 12 раз больше

    1000 × 12 = 12 000 кг

    Теперь найдем 4% от 12000. Полученный результат и будет ответом к задаче:

    12 000 × 0,04 = 480 кг

    Ответ: при остывании 12 тонн хлеба испарится 480 килограмм.

    Задача 4. Яблоки при сушке теряют 84% своей массы. Сколько получится сушенных яблок из 300 кг свежих?

    Найдем 84% от 300 кг

    300 : 100 × 84 = 252 кг

    300 кг свежих яблок в результате сушки потеряют 252 кг своей массы. Чтобы ответить на вопрос сколько получится сушенных яблок, нужно из 300 вычесть 252

    300 − 252 = 48 кг

    Ответ: из 300 кг свежих яблок получится 48 кг сушенных.

    Задача 5. В семенах сои содержится 20% масла. Сколько масла содержится в 700 кг сои?

    Найдем 20% от 700 кг

    700 × 0,20 = 140 кг

    Ответ: из 700 кг сои содержится 140 кг масла

    Задача 6. Гречневая крупа содержит 10% белков, 2,5% жиров и 60% углеводов. Сколько этих продуктов содержится в 14,4 ц гречневой крупы?

    Переведем 14,4 центнера в килограммы. В одном центнере 100 килограмм, в 14,4 центнерах в 14,4 раз больше

    100 × 14,4 = 1440 кг

    Найдем 10%, 2,5% и 60% от 1440 кг

    1440 × 0,10 = 144 (кг белков)

    1440 × 0,025 = 36 (кг жиров)

    1440 × 0,60 = 864 (кг углеводов)

    Ответ: в 14,4 ц гречневой крупы содержится 144 кг белков, 36 кг жиров, 864 кг углеводов.

    Задача 7. Для лесопитомника школьники собрали 60 кг семян дуба, акации, липы и клена. Желуди составляли 60%, семена клена 15%, семена липы 20% всех семян, а остальное составляли семена акации. Сколько килограммов семян акации было собрано школьниками?

    Примем за 100% семена дуба, акации, липы и клена. Вычтем из этих 100% проценты, выражающие семена дуба, липы и клена. Так мы узнаем сколько процентов составляют семена акации:

    100% − (60% + 15% + 20%) = 100% − 95% = 5%

    Теперь находим семена акации:

    Ответ: школьниками было собрано 3 кг семян акации.

    Проверка:

    36 + 9 + 12 + 3 = 60

    Задача 8. Купил человек продукты. Молоко стоит 60 рублей, что составляет 48% от стоимости всех покупок. Определить общую сумму денег, потраченных на продукты.

    Это задача на нахождение числа по его проценту, то есть по его известной части. Такую задачу можно решать двумя способами. Первый заключается в том, чтобы выразить известное число процентов в виде десятичной дроби и найти неизвестное число по этой дроби

    Выразим 48% в виде десятичной дроби

    Зная, что 0,48 составляет 60 рублей, мы можем определить сумму всех покупок. Для этого нужно найти неизвестное число по десятичной дроби:

    60 : 0,48 = 125 рублей

    Значит общая сумма денег, затраченных на продукты составляет 125 рублей.

    Второй способ заключается в том, чтобы сначала узнать сколько денег приходится на один процент, затем полученный результат умножить на 100

    48% это 60 рублей. Если мы разделим 60 рублей на 48, то узнаем сколько рублей приходится на 1%

    60 : 48% = 1,25 рублей

    На 1% приходится 1,25 рублей. Всего процентов 100. Если мы умножим 1,25 рублей на 100, получим общую сумму денег, затраченных на продукты

    1,25 × 100 = 125 рублей

    Задача 9. Из свежих слив выходит 35% сушенных. Сколько надо взять свежих слив, чтобы получить 140 кг сушенных? Сколько получится сушенных слив из 600 кг свежих?

    Выразим 35% в виде десятичной дроби и найдем неизвестное число по этой дроби:

    140 : 0,35 = 400 кг

    Чтобы получить 140 кг сушенных слив, нужно взять 400 кг свежих.

    Ответим на второй вопрос задачи — сколько получится сушенных слив из 600 кг свежих? Если из свежих слив выходит 35% сушенных, то достаточно найти эти 35% от 600 кг свежих слив

    600 × 0,35 = 210 кг

    Ответ: чтобы получить 140 кг сушенных слив, нужно взять 400 кг свежих. Из 600 кг свежих слив получится 210 кг сушенных.

    Задача 10. Усвоение жиров организмом человека составляет 95%. За месяц ученик употребил 1,2 кг жиров. Сколько жиров может быть усвоено его организмом?

    Переведем 1,2 кг в граммы

    1,2 × 1000 = 1200 г

    Найдем 95% от 1200 г

    1200 × 0,95 = 1140 г

    Ответ: 1140 г жиров может быть усвоено организмом ученика.

    Выражение чисел в процентах

    Процент, как было сказано ранее, можно представить в виде десятичной дроби. Для этого достаточно разделить число этих процентов на 100. Например, представим 12% в виде десятичной дроби:

    Замечание. Мы сейчас не находим процент от чего-то, а просто записываем его в виде десятичной дроби.

    Но возможен и обратный процесс. Десятичная дробь может быть представлена в виде процента. Для этого нужно умножить эту дробь на 100 и поставить знак процента (%)

    Представим десятичную дробь 0,12 в виде процентов

    Это действие называют выражением числа в процентах или выражением чисел в сотых долях.

    Умножение и деление являются обратными операциями. К примеру, если 2×5=10, то 10:5=2

    Точно также деление можно записать в обратном порядке. Если 10:5=2, то 2×5=10:

    Тоже самое происходит, когда мы выражаем десятичную дробь в виде процентов. Так, 12% были выражены в виде десятичной дроби следующим образом: 12:100=0,12 но потом эти же 12% были «возвращены» с помощью умножения, записав выражение 0,12×100=12%.

    Аналогично можно выразить в процентах любые другие числа, в том числе и целые. Например, выразим в процентах число 3. Умножим данное число на 100 и к полученному результату добавим знак процента:

    Большие проценты вида 300% поначалу могут сбивать с толку, поскольку человек привык считать 100% максимальной долей. Из дополнительных сведений о дробях мы знаем, что один целый объект можно обозначать через единицу. К примеру, если имеется целый не разрезанный торт, то его можно обозначить через 1

    Этот же торт можно обозначить как 100% торта. В этом случае и единица и 100% будут обозначать один и тот же целый торт:

    Разрежем торт пополам. В этом случае единица обратится в десятичное число 0,5 (поскольку это половина единицы), а 100% обратятся в 50% (поскольку 50 это половина от сотни)

    Вернем обратно целый торт, единицу и 100%

    Изобразим ещё два таких торта с такими же обозначениями:

    Если один торт является единицей, то три торта являются тремя единицами. Каждый торт является целым стопроцентным. Если сложить эти три сотни получится 300%.

    Поэтому при переводе целых чисел в проценты, мы умножаем эти числа на 100.

    Задача 2. Выразить в процентах число 5

    Задача 3. Выразить в процентах число 7

    Задача 4. Выразить в процентах число 7,5

    Задача 5. Выразить в процентах число 0,5

    Задача 6. Выразить в процентах число 0,9

    Пример 7. Выразить в процентах число 1,5

    Пример 8. Выразить в процентах число 2,8

    Задача 9. Джордж идет со школы домой. Первые пятнадцать минут он прошел 0,75 пути. В остальное время он прошел оставшиеся 0,25 пути. Выразите в процентах части пути, пройденные Джорджом.

    Задача 10. Джона угостили половиной яблока. Выразите эту половину в процентах.

    Половина яблока записывается в виде дроби 0,5. Чтобы выразить эту дробь в процентах, умножим её на 100 и к полученному результату добавим знак процента

    Аналоги в виде дробей

    Величина, выраженная в процентах, имеет свой аналог в виде обычной дроби. Так, аналогом для 50% является дробь . Пятьдесят процентов также можно назвать словом «половина».

    Аналогом для 25% является дробь . Двадцать пять процентов также можно назвать словом «четверть».

    Аналогом для 20% является дробь . Двадцать процентов также можно назвать словами «пятая часть».

    Аналогом для 40% является дробь .

    Аналогом для 60% является дробь

    Пример 1. Пять сантиметров это 50% от дециметра или или же просто половина. Во всех случаях речь идет об одной и той же величине — пяти сантиметрах из десяти

    Пример 2. Два с половиной сантиметра это 25% от дециметра или или же просто четверть

    Пример 3. Два сантиметра это 20% от дециметра или

    Пример 4. Четыре сантиметра это 40% от дециметра или

    Пример 5. Шесть сантиметров это 60% от дециметра или

    Уменьшение и увеличение процентов

    При увеличении или уменьшении величины, выраженной в процентах употребляется предлог «на».

    Примеры:

  • Увеличить на 50% — означает увеличить величину в 1,5 раза;
  • Увеличить на 100% — означает увеличить величину в 2 раза;
  • Увеличить на 200% — означает увеличить в 3 раза;
  • Уменьшить на 50% — означает уменьшить величину в 2 раза;
  • Уменьшить на 80% — означает уменьшить в 5 раз.

Пример 1. Десять сантиметров увеличили на 50%. Сколько сантиметров получилось?

Чтобы решать подобные задачи, нужно исходную величину принимать за 100%. Исходная величина это 10 см. 50% от них составляют 5 см

Изначальные 10 см увеличили на 50% (на 5 см), значит получилось 10+5 см, то есть 15 см

Аналогом же увеличения десяти сантиметров на 50% является множитель 1,5. Если умножить на него 10 см получится 15 см

Поэтому выражения «увеличить на 50%» и «увеличить в 1,5 раза» говорят об одном и том же.

Пример 2. Пять сантиметров увеличили на 100%. Сколько сантиметров получилось?

Примем исходные пять сантиметров за 100%. Сто процентов от этих пяти сантиметров будут сами 5 см. Если увеличить 5 см на эти же 5 см, то получится 10 см

Аналогом же увеличения пяти сантиметров на 100% является множитель 2. Если умножить на него 5 см получится 10 см

Поэтому выражения «увеличить на 100%» и «увеличить в 2 раза» говорят об одном и том же.

Пример 3. Пять сантиметров увеличили на 200%. Сколько сантиметров получилось?

Примем исходные пять сантиметров за 100%. Двести процентов это два раза по сто процентов. То есть, 200% от 5 см будут составлять 10 см (по 5 см на каждые 100%). Если увеличить 5 см на эти 10 см, то получится 15 см

Аналогом же увеличения пяти сантиметров на 200% является множитель 3. Если умножить на него 5 см получится 15 см

Поэтому выражения «увеличить на 200%» и «увеличить в 3 раза» говорят об одном и том же.

Пример 4. Десять сантиметров уменьшили на 50%. Сколько сантиметров осталось?

Примем исходные 10 см за 100%. Пятьдесят процентов от 10 см составляют 5 см. Если уменьшить 10 см на эти 5 см, останется 5 см

Аналогом же уменьшения десяти сантиметров на 50% является делитель 2. Если разделить на него 10 см, то получится 5 см

Поэтому выражения «уменьшить на 50%» и «уменьшить в 2 раза» говорят об одном и том же.

Пример 5. Десять сантиметров уменьшили на 80%. Сколько сантиметров осталось?

Примем исходные 10 см за 100%. Восемьдесят процентов от 10 см составляют 8 см. Если уменьшить 10 см на эти 8 см, останется 2 см

Аналогом же уменьшения десяти сантиметров на 80% является делитель 5. Если разделить на него 10 см, то получится 2 см

Поэтому выражения «уменьшить на 80%» и «уменьшить в 5 раз» говорят об одном и том же.

При решении задач на уменьшение и увеличение процентов, можно умножать/делить величину на указанный в задаче множитель.

Задача 1. Насколько процентов изменилась величина, если она увеличилась в 1,5 раза?

Величину о которой говорится в задаче можно обозначить как 100%. Далее умножить эти 100% на множитель 1,5

Теперь из полученных 150% вычтем изначальные 100% и получим ответ к задаче:

Задача 2. Насколько процентов изменилась величина, если она уменьшилась в 4 раза?

В этот раз будет происходить уменьшение величины, поэтому будем выполнять деление. Величину о которой говорится в задаче обозначим как 100%. Далее разделим эти 100% на делитель 4

Из изначальных 100% вычтем полученные 25% и получим ответ к задаче:

Значит при уменьшении величины в 4 раза она уменьшилась на 75%.

Задача 3. Насколько процентов изменилась величина, если она уменьшилась в 5 раз?

Величину о которой говорится в задаче обозначим как 100%. Далее разделим эти 100% на делитель 5

Из изначальных 100% вычтем полученные 20% и получим ответ к задаче:

Значит при уменьшении величины в 5 раз она уменьшилась на 80%.

Задача 4. Насколько процентов изменилась величина, если она уменьшилась в 10 раз?

Величину о которой говорится в задаче обозначим как 100%. Далее разделим эти 100% на делитель 10

Из изначальных 100% вычтем полученные 10% и получим ответ к задаче:

Значит при уменьшении величины в 10 раз она уменьшилась на 90%.

Задача на нахождение процентного соотношения

Чтобы выразить что-либо в процентном соотношении, сначала нужно записать дробь, показывающую какую часть первое число составляет от второго, затем выполнить деление в этой дроби и полученный результат выразить в процентах.

Например, пусть имеется пять яблок. При этом два яблока являются красными, три — зелеными. Выразим красные и зеленые яблоки в процентном соотношении.

Сначала нужно узнать какую часть составляют красные яблоки. Всего яблок пять, а красных два. Значит два из пяти или две пятых составляют красные яблоки:

Зеленых же яблок три. Значит три из пяти или три пятых составляют зеленые яблоки:

Имеем две дроби и . Выполним деление в этих дробях

Получили десятичные дроби 0,4 и 0,6. Теперь выразим в процентах эти десятичные дроби:

Значит 40% составляют красные яблоки, 60% — зеленые.

А все пять яблок составляют 40%+60%, то есть 100%

Задача 2. Двум сыновьям мама дала 200 рублей. Младшему брату мама дала 80 рублей, а старшему 120 рублей. Выразите в процентном соотношении деньги, данные каждому брату.

Младший брат получил 80 рублей из 200 рублей. Записываем дробь восемьдесят двухсотых:

Старший брат получил 120 рублей из 200 рублей. Записываем дробь сто двадцать двухсотых:

Имеем дроби и . Выполним деление в этих дробях

Выразим в процентах полученные результаты:

Значит 40% денег получил младший брат, а 60% — старший.

Некоторые дроби, показывающие какую часть первое число составляет от второго, можно сокращать.

Так дроби и можно было бы сократить. От этого ответ к задаче не изменился бы:

Задача 3. Бюджет семьи составляет 75 тыс. рублей в месяц. Из них 52,5 тыс. руб. — деньги, заработанные папой. 22,5 тыс. руб. — деньги, заработанные мамой. Выразите в процентах деньги, заработанные папой и мамой.

Данная задача, как и предыдущая, является задачей на нахождение процентного соотношения.

Выразим в процентах деньги, заработанные папой. Он заработал 52,5 тыс. рублей из 75 тыс. рублей

Выполним деление в этой дроби:

Значит папа заработал 70% денег. Далее нетрудно догадаться, что остальные 30% денег заработала мама. Ведь 75 тыс. рублей это все 100% денег. Для уверенности сделаем проверку. Мама заработала 22,5 тыс. руб. из 75 тыс. руб. Записываем дробь, выполняем деление и выражаем в процентах полученный результат:

Задача 4. Школьник тренируется делать подтягивания на перекладине. В прошлом месяце он мог делать 8 подтягиваний за подход. В этом месяце он может делать 10 подтягиваний за подход. На сколько процентов он увеличил количество подтягиваний?

Узнаем на сколько больше подтягиваний школьник делает в текущем месяце, чем в прошлом

Узнаем какую часть два подтягивания составляют от восьми подтягиваний. Для этого найдем отношение 2 к 8

Выполним деление в этой дроби

Значит школьник увеличил количество подтягиваний на 25%.

Эту задачу можно решить и вторым, более быстрым методом — узнать во сколько раз 10 подтягиваний больше, чем 8 подтягиваний и полученный результат выразить в процентах.

Чтобы узнать во сколько раз десять подтягиваний больше восьми подтягиваний, нужно найти отношение 10 к 8

Выполним деление в получившейся дроби

Показатель подтягиваний в текущем месяце составляет 125%. Данное высказывание нужно понимать именно как «составляет 125%», а не как «показатель увеличился на 125%». Это два разных высказывания, выражающих различные количества.

Высказывание «составляет 125%» нужно понимать как «восемь подтягиваний, которые составляют 100% плюс два подтягивания, которые составляют 25% от восьми подтягиваний». Графически это выглядит следующим образом:

А высказывание «увеличился на 125%» нужно понимать как «к текущим восьми подтягиваниях, которые составляли 100% добавились еще 100% (еще 8 подтягиваний) плюс еще 25% (2 подтягивания)». Итого получается 18 подтягиваний

100% + 100% + 25% = 8 + 8 + 2 = 18 подтягиваний

Графически это высказывание выглядит следующим образом:

Всего же получается 225%. Если найти 225% от восьми подтягиваний, мы получим 18 подтягиваний

Задача 5. В прошлом месяце зарплата составляла 19,2 тыс. руб. В текущем месяце она составила 20,16 тыс. руб. На сколько процентов повысилась зарплата?

Эту задачу как и предыдущую можно решать двумя способами. Первый заключается в том, чтобы сначала узнать на сколько рублей увеличилась зарплата. Далее узнать какую часть эта прибавка составляет от зарплаты прошлого месяца

Узнаем на сколько рублей повысилась зарплата:

20,16 − 19,2 = 0,96 тыс. руб.

Узнаем какую часть 0,96 тыс. руб. составляет от 19,2. Для этого найдем отношение 0,96 к 19,2

Выполним деление в получившейся дроби. По пути вспомним, как выполняется деление десятичных дробей:

Выразим полученный результат в процентах:

Значит зарплата повысилась на 5%.

Решим задачу вторым способом. Узнаем во сколько раз 20,16 тыс. руб. больше, чем 19,2 тыс. руб. Для этого найдем отношение 20,16 к 19,2

Выполним деление в получившейся дроби:

Зарплата составляет 105%. То есть, сюда входят 100%, которые составляли 19,2 тыс. руб., плюс 5% которые составляют 0,96 тыс. руб.

100% + 5% = 19,2 + 0,96

Задача 6. Цена ноутбука в этом месяце повысилась на 5%. Какова его цена, если в прошлом месяце он стоил 18,3 тыс. рублей?

Найдем 5% от 18,3:

Прибавим эти 5% к 18,3:

18,3 + 0,915 = 19,215 тыс. руб.

Ответ: цена ноутбука составляет 19,215 тыс. руб.

Задача 7. Цена ноутбука в этом месяце снизилась на 10%. Какова его цена, если в прошлом месяце он стоил 16,3 тыс. рублей?

Найдем 10% от 16,3:

Вычтем эти 10% из 16,3:

16,3 − 1,63 = 14, 67 (тыс. рублей)

Подобные задачи можно записывать кратко:

16,3 − (16,3 × 0,10) = 14,67 (тыс. рублей)

Ответ: цена ноутбука составляет 14,67 тыс. рублей.

Задача 8. В прошлом месяце цена ноутбука составляла 21 тыс. рублей. В этом месяце цена повысилась до 22,05 тыс. рублей. На сколько процентов повысилась цена?

Определим насколько рублей повысилась цена

22,05 − 21 = 1,50 (тыс. руб)

Узнаем какую часть 1,05 тыс. руб. составляет от 21 тыс. руб.

Выразим полученный результат в процентах

Ответ: цена ноутбука повысилась на 5%

Задача 8. Рабочий должен был изготовить по плану 600 деталей, а он изготовил 900 деталей. На сколько процентов он выполнил план?

Узнаем во сколько раз 900 деталей больше, чем 600 деталей. Для этого найдем отношение 900 к 600

Значение данной дроби равно 1,5. Выразим это значение в процентах:

Значит рабочий выполнил план на 150%. То есть, выполнил его на все 100%, изготовив 600 деталей. Затем изготовил еще 300 деталей, что составляет 50% от изначального плана.

Ответ: рабочий выполнил план на 150%.

Сравнение величин в процентах

Мы уже много раз сравнивали величины различными способами. Первым нашим инструментом была разность. Так, к примеру чтобы сравнить 5 рублей и 3 рубля, мы записывали разность 5−3. Получив ответ 2, можно было сказать, что «пять рублей больше трех рублей на два рубля».

Получаемый в результате вычитания ответ в повседневной жизни называют не «разностью», а «разницей».

Так, разница между пятью и тремя рубля составляет два рубля.

Следующим инструментом, которым мы воспользовались для сравнения величин, было отношение. Отношение позволяло нам узнать во сколько раз первое число больше второго (или сколько раз первое число содержит второе).

Так, к примеру десять яблок больше двух яблок в пять раз. Или по другому, десять яблок содержит два яблока пять раз. Данное сравнение можно записать с помощью отношения

Но величины можно сравнить и в процентах. Например, цену двух товаров сравнивать не в рублях, а оценивать, насколько цена одного товара больше или меньше цены другого в процентах.

Для сравнения величин в процентах, одну из них нужно обозначить как 100%, а вторую исходя из условий задачи.

Например, узнаем на сколько процентов десять яблок больше, чем восемь яблок.

За 100% нужно обозначить ту величину с которой мы что-либо сравниваем. Мы сравниваем 10 яблок с 8 яблоками. Значит за 100% обозначаем 8 яблок:

Теперь наша задача сравнить на сколько процентов 10 яблок больше, чем эти 8 яблок. 10 яблок это 8+2 яблока. Значит добавив к восьми яблокам еще два яблока, мы увеличим 100% еще на какое-то число процентов. Чтобы узнать на какое именно, определим сколько процентов от восьми яблок составляют два яблока

Добавив эти 25% к восьми яблокам, мы получим 10 яблок. А 10 яблок это 8+2, то есть 100% и еще 25%. Итого получаем 125%

Значит десять яблок больше восьми яблок на 25%.

Теперь решим обратную задачу. Узнаем насколько процентов восемь яблок меньше, чем десять яблок. Сразу напрашивается ответ, что восемь яблок меньше на 25%. Однако это не так.

Мы сравниваем восемь яблок с десятью яблоками. Мы договорились, что за 100% будем брать то, с чем сравниваем. Поэтому в этот раз за 100% берем 10 яблок:

Восемь яблок это 10−2, то есть уменьшив 10 яблок на 2 яблока, мы уменьшим их на какое-то число процентов. Чтобы узнать на какое именно, определим сколько процентов от десяти яблок составляют два яблока

Отняв эти 20% от десяти яблок, мы получим 8 яблок. А 8 яблок это 10−2, то есть 100% и минус 20%. Итого получаем 80%

Значит восемь яблок меньше десяти яблок на 20%.

Задача 2. На сколько процентов 5000 рублей больше, чем 4000 рублей?

Примем 4000 рублей за 100%. 5 тысяч больше 4 тысяч на 1 тысячу. Значит увеличив четыре тысячи на одну тысячу, мы увеличим четыре тысячи на какое-то количество процентов. Узнаем на какое именно. Для этого определим какую часть одна тысяча составляет от четырех тысяч:

1000 рублей от 4000 рублей составляют 25%. Если прибавить эти 25% к 4000, то получится 5000 рублей. Значит 5000 рублей на 25% больше, чем 4000 рублей

Задача 3. На сколько процентов 4000 рублей меньше, чем 5000 рублей?

В этот раз сравниваем 4000 с 5000. Примем 5000 за 100%. Пять тысяч больше четырех тысяч на одну тысячу рублей. Узнаем какую часть одна тысяча составляет от пяти тысяч

Тысяча от пяти тысяч составляет 20%. Если вычесть эти 20% от 5000 рублей, то получим 4000 рублей.

Значит 4000 рублей меньше 5000 рублей на 20%

Задачи на концентрацию, сплавы и смеси

Допустим возникло желание приготовить какой-нибудь сок. У нас в распоряжении имеется вода и малиновый сироп

Нальем 200 мл воды в стакан:

Добавим 50 мл малинового сиропа и размешаем полученную жидкость. В результате у нас получится 250 мл малинового сока (200 мл воды + 50 мл сиропа = 250 мл сока)

Какую часть от получившегося сока составляет малиновый сироп?

Малиновый сироп составляет сока. Вычислим это отношение, получим число 0,20 . Это число показывает количество растворённого сиропа в получившемся соке. Назовём это число концентрацией сиропа.

Концентрацией растворённого вещества называют отношение количества растворённого вещества или его массы к объему раствора.

Концентрация обычно выражается в процентах. Давайте выразим концентрацию сиропа в процентах:

Таким образом, концентрация сиропа в малиновом соке составляет 20%.

Вещества в растворе могут быть неоднородными. Например, смешаем 3 л воды и 200 г соли.

Масса 1 л воды составляет 1 кг. Тогда масса 3 л воды будет составлять 3 кг. Переведем 3 кг в граммы, получим 3 кг = 3000 г.

Теперь в 3000 г воды опустим 200 г соли и смешаем полученную жидкость. В результате получится соленный раствор, общая масса которого будет составлять 3000+200, то есть 3200 г. Найдем концентрацию соли в полученном растворе. Для этого найдём отношение массы растворенной соли к массе раствора

Значит при смешивании 3 л воды и 200 г соли получится 6,25%-й раствор соли.

Аналогично может быть определено количество вещества в сплаве или в смеси. Например, сплав содержит олово массой 210 г, и серебро массой 90 г. Тогда масса сплава будет составлять 210+90, то есть 300 г. Олова в сплаве будет содержаться , а серебра . В процентном соотношении олова будет 70% , а серебра 30%

При смешивании двух растворов получается новый раствор, состоящий из первого и второго растворов. У нового раствора концентрация вещества может быть другой. Полезным навыком является умение решать задачи на концентрацию, сплавы и смеси. В общем итоге смысл таких задач заключается в отслеживании изменений, которые происходят при смешивании растворов различной концентрации.

Смешаем два малиновых сока. Первый сок объемом 250 мл содержит 12,8% малинового сиропа. А второй сок объемом 300 мл содержит 15% малинового сиропа. Сольем эти два сока в большой стакан и смешаем. В результате получим новый сок объемом 550 мл.

Теперь определим концентрацию сиропа в полученном соке. Первый слитый сок объемом 250 мл содержал 12,8% сиропа. А 12,8% от 250 мл это 32 мл. Значит первый сок содержал 32 мл сиропа.

Второй слитый сок объемом 300 мл содержал 15% сиропа. А 15% от 300 мл это 45 мл. Значит второй сок содержал 45 мл сиропа.

Сложим количества сиропов:

32 мл + 45 мл = 77 мл

Эти 77 мл сиропа содержатся в новом соке, объем которого составляет 550 мл. Определим концентрацию сиропа в этом соке. Для этого найдём отношение 77 мл растворённого сиропа к объему сока 550 мл:

Значит при смешивании 12,8%-го малинового сока объемом 250 мл и 15%‍-го малинового сока объемом 300 мл, получается 14%-й малиновый сок объемом 550 мл.

Задача 1. Имеются 3 раствора морской соли в воде: первый раствор содержит 10% соли, второй содержит 15% соли и третий — 20% соли. Смешали 130 мл первого раствора, 200 мл второго раствора и 170 мл третьего раствора. Определите сколько процентов составляет морская соль в полученном растворе.

Определим объем полученного раствора:

130 мл + 200 мл + 170 мл = 500 мл

Поскольку в первом растворе было 130 × 0,10 = 13 мл морской соли, во втором растворе 200 × 0,15 = 30 мл морской соли, а в третьем — 170 × 0,20 = 34 мл морской соли, то в полученном растворе будет содержаться 13 + 30 + 34 = 77 мл морской соли.

Определим концентрацию морской соли в полученном растворе. Для этого найдём отношение 77 мл морской соли к объему раствора 500 мл

Значит в полученном растворе содержится 15,4% морской соли.

Задача 2. Сколько граммов воды надо добавить к 50 г раствора, содержащего 8% соли, чтобы получить 5%-й раствор?

Заметим, что если к имеющемуся раствору добавить воды, то количество соли в нём не изменится. Изменится только её процентное содержание, поскольку добавление воды в раствор приведёт к изменению его массы.

Нам нужно добавить такое количество воды при котором восемь процентов соли стали бы пятью процентами.

Определим сколько граммов соли содержится в 50 г раствора. Для этого найдем 8% от 50

8% от 50 г составляют 4 г. Другими словами, на восемь частей из ста приходятся 4 грамма соли. Давайте сделаем так, чтобы эти 4 грамма приходились не на восемь частей, а на пять частей, то есть на 5%

Теперь зная, что на 5% раствора приходятся 4 грамма, мы можем найти массу всего раствора. Для этого нужно найти число по его проценту:

4 г : 5 = 0,8 г
0,8 г × 100 = 80 г

80 граммов раствора это масса при которой 4 грамма соли будут приходиться на 5% раствора. А для получения этих 80 граммов, нужно к изначальным 50 граммам добавить 30 граммов воды.

Значит для получения 5%-го раствора соли, нужно к имеющемуся раствору добавить 30 г воды.

Задача 2. Виноград содержит 91% влаги, а изюм – 7%. Сколько килограммов винограда требуется для получения 21 килограмма изюма?

Виноград состоит из влаги и чистого вещества. Если в свежем винограде содержится 91% влаги, то на остальные 9% будет приходиться чистое вещество этого винограда:

Изюм же содержит 93% чистого вещества и 7% влаги:

Заметим, что в процессе превращения винограда в изюм, исчезает только влага этого винограда. Чистое вещество остаётся без изменения. После того, как виноград превратится в изюм, в получившемся изюме будет 7% влаги и 93% чистого вещества.

Определим сколько чистого вещества содержится в 21 кг изюма. Для этого найдем 93% от 21 кг

21 кг × 0,93 = 19,53 кг

Теперь вернемся к первому рисунку. Наша задача состояла в том, чтобы определить сколько винограда нужно взять для получения 21 кг изюма. Чистое вещество массой 19,53 кг будет приходиться на 9% винограда:

Теперь зная, что 9% чистого вещества составляют 19,53 кг, мы можем определить сколько винограда требуется для получения 21 кг изюма. Для этого нужно найти число по его проценту:

19,53 кг : 9 = 2,17 кг
2,17 кг × 100 = 217 кг

Значит для получения 21 кг изюма нужно взять 217 кг винограда.

Задача 3. В сплаве олова и меди медь составляет 85%. Сколько надо взять сплава, чтобы в нём содержалось 4,5 кг олова?

Если в сплаве медь составляет 85%, то на остальные 15% будет приходиться олово:

Спрашивается сколько надо взять сплава, чтобы в нем содержалось 4,5 олова. Поскольку олова в сплаве содержится 15%, то 4,5 кг олова и будут приходиться на эти 15%.

А зная, что 4,5 кг сплава составляют 15% мы можем определить массу всего сплава. Для этого нужно найти число по его проценту:

4,5 кг : 15 = 0,3 кг
0,3 кг × 100 = 30 кг

Значит сплава нужно взять 30 кг, чтобы в нём содержалось 4,5 кг олова.

Задача 4. Смешали некоторое количество 12%-го раствора соляной кислоты с таким же количеством 20%-го раствора этой же кислоты. Найти концентрацию получившейся соляной кислоты.

Изобразим на рисунке первый раствор в виде прямой линии и выделим на нём 12%

Поскольку количество растворов одинаково, рядом можно изобразить такой же рисунок, иллюстрирующий второй раствор с содержанием соляной кислоты 20%

У нас получилось двести частей раствора (100% + 100%) , тридцать две части из которых составляют соляную кислоту (12% + 20%)

Определим какую часть 32 части составляют от 200 частей

Значит при смешивании 12%-го раствора соляной кислоты с таким же количеством 20%-го раствора этой же кислоты получится 16%-й раствор соляной кислоты.

Для проверки представим, что масса первого раствора была 2 кг. Масса второго раствора так же будет составлять 2 кг. Тогда при смешивании этих растворов получится 4 кг раствора. В первом растворе соляной кислоты было 2 × 0,12 = 0,24 кг, а во втором — 2 × 0,20 = 0,40 кг . Тогда в новом растворе соляной кислоты будет 0,24 + 0,40 = 0,64 кг . Концентрация соляной кислоты составит 16%

Смотрите еще:

  • Правила использования сертификата Обсуждения Условия и правила использования подарочных сертификатов. 1 сообщение Срок действия подарочного сертификата проводимой акции – один месяц с даты начала проведения акции, указанной на сертификате с оборотной стороны. Виды […]
  • Закон о запрете курения 15 Закон о штрафах за курение в неположенных местах принят Госдумой Госдума приняла во втором и третьем чтениях закон об административной ответственности за нарушение так называемого "антитабачного" закона. Документом, в частности, […]
  • Когда будет прибавка пенсии по потере кормильца В жизни может случиться всякое, в том числе утрата близкого человека, от которого члены семьи финансово зависят. В таких случаях государство поможет не пасть духом и будет выплачивать пенсию по потере кормильца. государственная; Членам […]
  • Через сколько дней платить штраф В какой срок платить штраф Здравствуйте. нуждаюсь в консультации. 25 января состоялся мировой суд и было вынесено постановление о лишении водительских прав и выплатить штраф 30 тыс.руб в течение 60 дней. Т.к. с решением я была не […]
  • Какой сейчас штраф за езду в нетрезвом виде Штраф за пьяную езду увеличат до 500 тысяч рублей (и начнут сажать в тюрьму) Любителей порулить в нетрезвом состоянии ждет неприятная новость: МВД собирается радикально ужесточить наказание за повторную пьянку. Денежный штраф будет […]
  • Как считается срок патента Какие права дает патент? Сроки его действия, на что обращать особое внимание? Ответ: патент - документ, подтверждающий право иностранного гражданина, прибывшего в Российскую Федерацию в порядке, не требующем получения визы, на временное […]
  • Новые постановления о пенсиях Новый пенсионный закон Каждый работающий человек, на протяжении всех рабочих лет, обязан выплачивать взносы в социальный и страховой фонды Российской Федерации. Производятся отчисления для получения пенсии при достижении определенного […]
  • Составьте закон распределения числа попаданий Испытания по схеме Бернулли Назначение сервиса . Онлайн-калькулятор используется для построения биноминальным ряда распределения и вычисления всех характеристик ряда: математического ожидания, дисперсии и среднеквадратического отклонения. […]