Логарифм правила действия с логарифмами

Логарифм правила действия с логарифмами

Определение логарифма

Логарифмом числа b по основанию а называется показатель степени, в которую нужно возвести а , чтобы получить b .

Числом е в математике принято обозначать предел, к которому стремиться выражение

Число е является иррациональным числом — числом, несоизмеримым с единицей, оно не может быть точно выраженным ни целым ни дробным рациональным числом.

Буква е — первая буква латинского слова exponere — выставлять напоказ, отсюда в математике название экспоненциальная — показательная функция.

Число е широко применяется в математике, и во всех науках, так или иначе применяющих для своих нужд математические расчеты.

Логарифмы. Свойства логарифмов

Определение: Логарифмом положительного числа b по основанию называется показатель степени с, в которую надо возвести число а, чтобы получить число b.

Основное логарифмическое тождество:

7) Формула перехода к новому основанию:

lna = logea, e ≈ 2,718…

Задачи и тесты по теме «Логарифмы. Свойства логарифмов»

  • Логарифмы — Важные темы для повторения ЕГЭ по математике

Рекомендации к теме

Для успешного выполнения заданий по данной теме Вы должны знать определение логарифма, свойства логарифмов, основное логарифмическое тождество, определения десятичного и натурального логарифмов. Основные типы задач по данной теме — это задачи на вычисление и преобразование логарифмических выражений. Рассмотрим их решение на следующих примерах.

Решение: Используя свойства логарифмов, получим

Решение: используя свойства степени, получим

1) (2 2 ) log25 =(2 log25 ) 2 =5 2 =25

Свойства логарифмов, формулировки и доказательства.

Логарифмы обладают рядом характерных свойств. В этой статье мы разберем основные свойства логарифмов. Здесь мы дадим их формулировки, запишем свойства логарифмов в виде формул, покажем примеры их применения, а также приведем доказательства свойств логарифмов.

Навигация по странице.

Основные свойства логарифмов, формулы

Для удобства запоминания и использования представим основные свойства логарифмов в виде списка формул. В следующем пункте дадим их формулировки, доказательства, примеры использования и необходимые пояснения.

  • Свойство логарифма единицы: loga1=0 для любого a>0 , a≠1 .
  • Логарифм числа, равного основанию: logaa=1 при a>0 , a≠1 .
  • Свойство логарифма степени основания: logaa p =p , где a>0 , a≠1 и p – любое действительное число.
  • Логарифм произведения двух положительных чисел: loga(x·y)=logax+logay , a>0 , a≠1 , x>0 , y>0 ,
    и свойство логарифма произведения n положительных чисел: loga(x1·x2·…·xn)= logax1+logax2+…+logaxn , a>0 , a≠1 , x1>0, x2>0, …, xn>0 .
  • Свойство логарифма частного: , где a>0 , a≠1 , x>0 , y>0 .
  • Логарифм степени числа: logab p =p·loga|b| , где a>0 , a≠1 , b и p такие числа, что степень b p имеет смысл и b p >0 .

  • Следствие: , где a>0 , a≠1 , n – натуральное число, большее единицы, b>0 .
  • Следствие 1: , a>0 , a≠1 , b>0 , b≠1 .
  • Следствие 2: , a>0 , a≠1 , b>0 , p и q – действительные числа, q≠0 , в частности при b=a имеем .
  • Формулировки и доказательства свойств

    Переходим к формулированию и доказательству записанных свойств логарифмов. Все свойства логарифмов доказываются на основе определения логарифма и вытекающего из него основного логарифмического тождества, а также свойств степени.

    Начнем со свойства логарифма единицы. Его формулировка такова: логарифм единицы равен нулю, то есть, loga1=0 для любого a>0 , a≠1 . Доказательство не вызывает сложностей: так как a 0 =1 для любого a , удовлетворяющего указанным выше условиям a>0 и a≠1 , то доказываемое равенство loga1=0 сразу следует из определения логарифма.

    Приведем примеры применения рассмотренного свойства: log31=0 , lg1=0 и .

    Переходим к следующему свойству: логарифм числа, равного основанию, равен единице, то есть, logaa=1 при a>0 , a≠1 . Действительно, так как a 1 =a для любого a , то по определению логарифма logaa=1 .

    Примерами использования этого свойства логарифмов являются равенства log55=1 , log5,65,6 и lne=1 .

    Логарифм степени числа, равного основанию логарифма, равен показателю степени. Этому свойству логарифма отвечает формула вида logaa p =p , где a>0 , a≠1 и p – любое действительное число. Это свойство напрямую следует из определения логарифма. Заметим, что оно позволяет сразу указать значение логарифма, если есть возможность представить число под знаком логарифма в виде степени основания, подробнее об этом мы поговорим в статье вычисление логарифмов.

    К примеру, log22 7 =7 , lg10 -4 =-4 и .

    Логарифм произведения двух положительных чисел x и y равен произведению логарифмов этих чисел: loga(x·y)=logax+logay , a>0 , a≠1 . Докажем свойство логарифма произведения. В силу свойств степени a logax+logay =a logax ·a logay , а так как по основному логарифмическому тождеству a logax =x и a logay =y , то a logax ·a logay =x·y . Таким образом, a logax+logay =x·y , откуда по определению логарифма вытекает доказываемое равенство.

    Покажем примеры использования свойства логарифма произведения: log5(2·3)=log52+log53 и .

    Свойство логарифма произведения можно обобщить на произведение конечного числа n положительных чисел x1, x2, …, xn как loga(x1·x2·…·xn)= logax1+logax2+…+logaxn . Данное равенство без проблем доказывается методом математической индукции.

    Например, натуральных логарифм произведения можно заменить суммой трех натуральных логарифмов чисел 4 , e , и .

    Логарифм частного двух положительных чисел x и y равен разности логарифмов этих чисел. Свойству логарифма частного соответствует формула вида , где a>0 , a≠1 , x и y – некоторые положительные числа. Справедливость этой формулы доказывается как и формула логарифма произведения: так как , то по определению логарифма .

    Приведем пример использования этого свойства логарифма: .

    Переходим к свойству логарифма степени. Логарифм степени равен произведению показателя степени на логарифм модуля основания этой степени. Запишем это свойство логарифма степени в виде формулы: logab p =p·loga|b| , где a>0 , a≠1 , b и p такие числа, что степень b p имеет смысл и b p >0 .

    Сначала докажем это свойство для положительных b . Основное логарифмическое тождество позволяет нам представить число b как a logab , тогда b p =(a logab ) p , а полученное выражение в силу свойство степени равно a p·logab . Так мы приходим к равенству b p =a p·logab , из которого по определению логарифма заключаем, что logab p =p·logab .

    Осталось доказать это свойство для отрицательных b . Здесь замечаем, что выражение logab p при отрицательных b имеет смысл лишь при четных показателях степени p (так как значение степени b p должно быть больше нуля, в противном случае логарифм не будет иметь смысла), а в этом случае b p =|b| p . Тогда b p =|b| p =(a loga|b| ) p =a p·loga|b| , откуда logab p =p·loga|b| .

    Например, и ln(-3) 4 =4·ln|-3|=4·ln3 .

    Из предыдущего свойства вытекает свойство логарифма из корня: логарифм корня n -ой степени равен произведению дроби 1/n на логарифм подкоренного выражения, то есть, , где a>0 , a≠1 , n – натуральное число, большее единицы, b>0 .

    Доказательство базируется на равенстве (смотрите определение степени с дробным показателем), которое справедливо для любых положительных b , и свойстве логарифма степени: .

    Вот пример использования этого свойства: .

    Теперь докажем формулу перехода к новому основанию логарифма вида . Для этого достаточно доказать справедливость равенства logcb=logab·logca . Основное логарифмическое тождество позволяет нам число b представить как a logab , тогда logcb=logca logab . Осталось воспользоваться свойством логарифма степени: logca logab =logab·logca . Так доказано равенство logcb=logab·logca , а значит, доказана и формула перехода к новому основанию логарифма .

    Покажем пару примеров применения этого свойства логарифмов: и .

    Формула перехода к новому основанию позволяет переходить к работе с логарифмами, имеющими «удобное» основание. Например, с ее помощью можно перейти к натуральным или десятичным логарифмам, чтобы можно было вычислить значение логарифма по таблице логарифмов. Формула перехода к новому основанию логарифма также позволяет в некоторых случаях находить значение данного логарифма, когда известны значения некоторых логарифмов с другими основаниями.

    Часто используется частный случай формулы перехода к новому основанию логарифма при c=b вида . Отсюда видно, что logab и logba – взаимно обратные числа. К примеру, .

    Также часто используется формула , которая удобна при нахождении значений логарифмов. Для подтверждения своих слов покажем, как с ее помощью вычисляется значение логарифма вида . Имеем . Для доказательства формулы достаточно воспользоваться формулой перехода к новому основанию логарифма a : .

    Осталось доказать свойства сравнения логарифмов.

    Воспользуемся методом от противного. Предположим, что при a1>1 , a2>1 и a12 и при 0 1 справедливо loga1b≤loga2b . По свойствам логарифмов эти неравенства можно переписать как и соответственно, а из них следует, что logba1≤logba2 и logba1≥logba2 соответственно. Тогда по свойствам степеней с одинаковыми основаниями должны выполняться равенства b logba1 ≥b logba2 и b logba1 ≥b logba2 , то есть, a1≥a2 . Так мы пришли к противоречию условию a12 . На этом доказательство завершено.

    Основные свойства логарифмов

    • Материалы к уроку
    • Скачать все формулы
    • Логарифмы, как и любые числа, можно складывать, вычитать и всячески преобразовывать. Но поскольку логарифмы — это не совсем обычные числа, здесь есть свои правила, которые называются основными свойствами.

      Эти правила обязательно надо знать — без них не решается ни одна серьезная логарифмическая задача. К тому же, их совсем немного — все можно выучить за один день. Итак, приступим.

      Сложение и вычитание логарифмов

      Рассмотрим два логарифма с одинаковыми основаниями: log a x и log a y . Тогда их можно складывать и вычитать, причем:

      Итак, сумма логарифмов равна логарифму произведения, а разность — логарифму частного. Обратите внимание: ключевой момент здесь — одинаковые основания. Если основания разные, эти правила не работают!

      Эти формулы помогут вычислить логарифмическое выражение даже тогда, когда отдельные его части не считаются (см. урок «Что такое логарифм»). Взгляните на примеры — и убедитесь:

      Задача. Найдите значение выражения: log6 4 + log6 9.

      Поскольку основания у логарифмов одинаковые, используем формулу суммы:
      log6 4 + log6 9 = log6 (4 · 9) = log6 36 = 2.

      Задача. Найдите значение выражения: log2 48 − log2 3.

      Основания одинаковые, используем формулу разности:
      log2 48 − log2 3 = log2 (48 : 3) = log2 16 = 4.

      Задача. Найдите значение выражения: log3 135 − log3 5.

      Снова основания одинаковые, поэтому имеем:
      log3 135 − log3 5 = log3 (135 : 5) = log3 27 = 3.

      Как видите, исходные выражения составлены из «плохих» логарифмов, которые отдельно не считаются. Но после преобразований получаются вполне нормальные числа. На этом факте построены многие контрольные работы. Да что контрольные — подобные выражения на полном серьезе (иногда — практически без изменений) предлагаются на ЕГЭ.

      Вынесение показателя степени из логарифма

      Теперь немного усложним задачу. Что, если в основании или аргументе логарифма стоит степень? Тогда показатель этой степени можно вынести за знак логарифма по следующим правилам:

    • log a x n = n · log a x ;
    • Несложно заметить, что последнее правило следует их первых двух. Но лучше его все-таки помнить — в некоторых случаях это значительно сократит объем вычислений.

      Разумеется, все эти правила имеют смысл при соблюдении ОДЗ логарифма: a > 0, a ≠ 1, x > 0. И еще: учитесь применять все формулы не только слева направо, но и наоборот, т.е. можно вносить числа, стоящие перед знаком логарифма, в сам логарифм. Именно это чаще всего и требуется.

      Задача. Найдите значение выражения: log7 49 6 .

      Избавимся от степени в аргументе по первой формуле:
      log7 49 6 = 6 · log7 49 = 6 · 2 = 12

      Задача. Найдите значение выражения:

      [Подпись к рисунку]

      Заметим, что в знаменателе стоит логарифм, основание и аргумент которого являются точными степенями: 16 = 2 4 ; 49 = 7 2 . Имеем:

      [Подпись к рисунку]

      Думаю, к последнему примеру требуются пояснения. Куда исчезли логарифмы? До самого последнего момента мы работаем только со знаменателем. Представили основание и аргумент стоящего там логарифма в виде степеней и вынесли показатели — получили «трехэтажную» дробь.

      Теперь посмотрим на основную дробь. В числителе и знаменателе стоит одно и то же число: log2 7. Поскольку log2 7 ≠ 0, можем сократить дробь — в знаменателе останется 2/4. По правилам арифметики, четверку можно перенести в числитель, что и было сделано. В результате получился ответ: 2.

      Переход к новому основанию

      Говоря о правилах сложения и вычитания логарифмов, я специально подчеркивал, что они работают только при одинаковых основаниях. А что, если основания разные? Что, если они не являются точными степенями одного и того же числа?

      На помощь приходят формулы перехода к новому основанию. Сформулируем их в виде теоремы:

      Пусть дан логарифм log a x . Тогда для любого числа c такого, что c > 0 и c ≠ 1, верно равенство:

      [Подпись к рисунку]

      В частности, если положить c = x , получим:

      [Подпись к рисунку]

      Из второй формулы следует, что можно менять местами основание и аргумент логарифма, но при этом все выражение «переворачивается», т.е. логарифм оказывается в знаменателе.

      Эти формулы редко встречается в обычных числовых выражениях. Оценить, насколько они удобны, можно только при решении логарифмических уравнений и неравенств.

      Впрочем, существуют задачи, которые вообще не решаются иначе как переходом к новому основанию. Рассмотрим парочку таких:

      Задача. Найдите значение выражения: log5 16 · log2 25.

      Заметим, что в аргументах обоих логарифмов стоят точные степени. Вынесем показатели: log5 16 = log5 2 4 = 4log5 2; log2 25 = log2 5 2 = 2log2 5;

      А теперь «перевернем» второй логарифм:

      [Подпись к рисунку]

      Поскольку от перестановки множителей произведение не меняется, мы спокойно перемножили четверку и двойку, а затем разобрались с логарифмами.

      Задача. Найдите значение выражения: log9 100 · lg 3.

      Основание и аргумент первого логарифма — точные степени. Запишем это и избавимся от показателей:

      [Подпись к рисунку]

      Теперь избавимся от десятичного логарифма, перейдя к новому основанию:

      [Подпись к рисунку]

      Основное логарифмическое тождество

      Часто в процессе решения требуется представить число как логарифм по заданному основанию. В этом случае нам помогут формулы:

      1. n = log a a n
      2. В первом случае число n становится показателем степени, стоящей в аргументе. Число n может быть абсолютно любым, ведь это просто значение логарифма.

        Вторая формула — это фактически перефразированное определение. Она так и называется: основное логарифмическое тождество .

        В самом деле, что будет, если число b возвести в такую степень, что число b в этой степени дает число a ? Правильно: получится это самое число a . Внимательно прочитайте этот абзац еще раз — многие на нем «зависают».

        Подобно формулам перехода к новому основанию, основное логарифмическое тождество иногда бывает единственно возможным решением.

        [Подпись к рисунку]

        Заметим, что log25 64 = log5 8 — просто вынесли квадрат из основания и аргумента логарифма. Учитывая правила умножения степеней с одинаковым основанием, получаем:

        [Подпись к рисунку]

        Если кто-то не в курсе, это была настоящая задача из ЕГЭ 🙂

        Логарифмическая единица и логарифмический ноль

        В заключение приведу два тождества, которые сложно назвать свойствами — скорее, это следствия из определения логарифма. Они постоянно встречаются в задачах и, что удивительно, создают проблемы даже для «продвинутых» учеников.

        1. log a a = 1 — это логарифмическая единица . Запомните раз и навсегда: логарифм по любому основанию a от самого этого основания равен единице.
        2. log a 1 = 0 — это логарифмический ноль . Основание a может быть каким угодно, но если в аргументе стоит единица — логарифм равен нулю! Потому что a 0 = 1 — это прямое следствие из определения.

        Вот и все свойства. Обязательно потренируйтесь применять их на практике! Скачайте шпаргалку в начале урока, распечатайте ее — и решайте задачи.

        Логарифм. Свойства логарифма (сложение и вычитание).

        Свойства логарифма вытекают из его определения. И так логарифм числа b по основанию а определяется как показатель степени, в которую надо возвести число a, чтобы получить число b (логарифм существует только у положительных чисел).

        Из данной формулировки следует, что вычисление x=logab, равнозначно решению уравнения a x =b. Например, log28 = 3 потому, что 8 = 2 3 . Формулировка логарифма дает возможность обосновать, что если b=a с , то логарифм числа b по основанию a равен с. Также ясно, что тема логарифмирования тесно взаимосвязана с темой степени числа.

        С логарифмами, как и с любыми числами, можно выполнять операции сложения, вычитания и всячески трансформировать. Но ввиду того, что логарифмы — это не совсем ординарные числа, здесь применимы свои особенные правила, которые называются основными свойствами.

        Сложение и вычитание логарифмов.

        Возьмем два логарифма с одинаковыми основаниями: loga x и loga y. Тогда сними возможно выполнять операции сложения и вычитания:

        Как видим, сумма логарифмов равняется логарифму произведения, а разность логарифмов — логарифму частного. Причем это верно если числа а, х и у положительны и а ≠ 1.

        Важно обращать внимание, что основным аспектом в данных формулах выступают одни и те же основания. Если основания отличаются друг от друга, эти правила не применимы!

        Правила сложения и вычитания логарифмов с одинаковыми основаниями читаются не только с лева на право, но и на оборот. В результате мы имеем теоремы логарифма произведения и логарифма частного.

        Логарифм произведения двух положительных чисел равен сумме их логарифмов; перефразируя данную теорему получим следующее, если числа а, x и у положительны и а ≠ 1, то:

        Логарифм частного двух положительных чисел равен разности логарифмов делимого и делителя. Говоря по другому, если числа а, х и у положительны и а ≠ 1, то:

        Применим вышеизложенные теоремы для решения примеров:

        Если числа x и у отрицательны, то формула логарифма произведения становится бессмысленной. Так, запрещено писать:

        так как выражения log2(-8) и log2(-4) вообще не определены (логарифмическая функция у = log2х определена лишь для положительных значений аргументах).

        Теорема произведения применима не только для двух, но и для неограниченного числа сомножителей. Это означает, что для всякого натурального k и любых положительных чисел x1, x2, . . . ,xn существует тождество:

        Из теоремы логарифма частного можно получить еще одно свойство логарифма. Общеизвестно, что loga1= 0, следовательно,

        А значит имеет место равенство:

        Логарифмы двух взаимно обратных чисел по одному и тому же основанию будут различны друг от друга исключительно знаком. Так:

        Логарифм. Свойства логарифмов

        Логарифм. Свойства логарифмов

        Рассмотрим равенство . Пусть нам известны значения и и мы хотим найти значение .

        То есть мы ищем показатель степени, в которую нужно взвести чтобы получить .

        Пусть переменная может принимать любое действительное значение, тогда на переменные и накладываются такие ограничения: o» title=»a>o»/> , 1″ title=»a<>1″/>, 0″ title=»b>0″/>

        Если нам известны значения и , и перед нами стоит задача найти неизвестное , то для этой цели вводится математическое действие, которое называется логарифмирование.

        Чтобы найти значение , мы берем логарифм числа по основанию :

        Логарифмом числа по основанию называется показатель степени, в которую надо возвести , чтобы получить .

        То есть основное логарифмическое тождество:

        o» title=»a>o»/> , 1″ title=»a<>1″/>, 0″ title=»b>0″/>

        является по сути математической записью определения логарифма.

        Математическая операция логарифмирование является обратной по отношению к операции возведения в степень, поэтому свойства логарифмов тесно связаны со свойствами степени.

        Перечислим основные свойства логарифмов:

        (o» title=»a>o»/> , 1″ title=»a<>1″/>, 0″ title=»b>0″/>, 0,

        d>0″/>, 1″ title=»d<>1″/>

        1.

        2.

        3.

        4.

        5.

        Следующая группа свойств позволяет представить показатель степени выражения, стоящего под знаком логарифма, или стоящего в основании логарифма в виде коэффициента перед знаком логарифма:

        6.

        7.

        8.

        9.

        Следующая группа формул позволяет перейти от логарифма с данным основанием к логарифму с произвольным основанием, и называется формулами перехода к новому основанию:

        10.

        11.

        12. (следствие из свойства 11)

        Следующие три свойства не очень известны, однако они часто используются при решении логарифмических уравнений, или при упрощении выражений, содержащих логарифмы:

        13.

        14.

        15.

        Частные случаи:

        десятичный логарифм

        натуральный логарифм

        При упрощении выражений, содержащих логарифмы применяется общий подход:

        1. Представляем десятичные дроби в виде обыкновенных.

        2. Смешанные числа представляем в виде неправильных дробей.

        3. Числа, стоящие в основании логарифма и под знаком логарифма раскладываем на простые множители.

        4. Стараемся привести все логарифмы к одному основанию.

        5. Применяем свойства логарифмов.

        Давайте рассмотрим примеры упрощения выражений, содержащих логарифмы.

        Пример 1.

        Вычислить:

        Упростим все показатели степеней: наша задача привести их к логарифмам, в основании которых стоит то же число, что и в основании степtни.

        ==(по свойству 7)=(по свойству 6) =

        Подставим показатели, которые у нас получились в исходное выражение. Получим:

        Ответ: 5,25

        Пример 2. Вычислить:

        Приведем все логарифмы к основанию 6 (при этом логарифмы из знаменателя дроби «перекочуют» в числитель):

        Разложим числа, стоящие под знаком логарифма на простые множители:

        Применим свойства 4 и 6:

        Введем замену

        Получим:

        Ответ: 1

        Логарифм . Основное логарифмическое тождество .

        Свойства логарифмов. Десятичный логарифм . Натуральный логарифм.

        Логарифмом положительного числа N по основанию ( b > 0, b 1 ) называется показатель степени x , в которую нужно возвести b , чтобы получить N .

        Эта запись равнозначна следующей: b x = N .

        П р и м е р ы : log3 81 = 4 , так как 3 4 = 81 ;

        log1/3 27 = 3 , так как ( 1/3 ) — 3 = 3 3 = 27 .

        Вышеприведенное определение логарифма можно записать в виде тождества:

        Основные свойства логарифмов.

        2) log 1 = 0 , так как b 0 = 1 .

        3) Логарифм произведения равен сумме логарифмов сомножителей:

        4) Логарифм частного равен разности логарифмов делимого и делителя:

        5) Логарифм степени равен произведению показателя степени на логарифм её основания:

        Следствием этого свойства является следующее: логарифм корня равен логарифму подкоренного числа, делённому на степень корня:

        6) Если в основании логарифма находится степень, то величину, обратную показателю степени, можно вынести за знак лога рифма:

        Два последних свойства можно объединить в одно:

        7) Формула модуля перехода ( т. e . перехода от одного основания логарифма к другому основанию ):

        В частном случае при N = a имеем:

        Десятичным логарифмом называется логарифм по основанию 10. Он обозначается lg , т.е. log 10 N = lg N . Логарифмы чисел 10, 100, 1000, . p авны соответственно 1, 2, 3, …, т.е. имеют столько положительных

        единиц, сколько нулей стоит в логарифмируемом числе после единицы. Логарифмы чисел 0.1, 0.01, 0.001, . p авны соответственно –1, –2, –3, …, т.е. имеют столько отрицательных единиц, сколько нулей стоит в логарифмируемом числе перед единицей ( считая и нуль целых ). Логарифмы остальных чисел имеют дробную часть, называемую мантиссой. Целая часть логарифма называется характеристикой. Для практического при менения десятичные логарифмы наиболее удобны.

        Натуральным логарифмом называется логарифм по основанию е . Он обозначается ln , т.е. log e N = ln N . Число е является иррациональным, его приближённое значение 2.718281828. Оно является пределом, к которому стремится число ( 1 + 1 / n ) n при неограниченном возрастании n ( см. первый замечательный предел на странице «Пределы числовых последовательностей»).
        Как это ни покажется странным, натуральные логарифмы оказались очень удобными при проведении различного рода операций, связанных с анализом функций. Вычисление логарифмов по основанию е осуществляется гораздо быстрее, чем по любому другому основанию.

        Смотрите еще:

        • Закон об усыновлении детей в россии Что нужно сегодня для усыновления ребенка в России? Усыновление в России, кроме ответственного личного решения, предполагает ряд процедур государственной проверки кандидатов. Жесткий отбор на подготовительном этапе способствует более […]
        • Егрюл налог 59 ру Сведения бесплатно по ИНН или ОГРН из реестра налоговой по всей России — онлайн На Едином портале Налоговых услуг могут быть получены сведения о государственной регистрации юридических лиц, индивидуальных предпринимателей, […]
        • Штраф за забытый полис Наказание за езду без документов (водительские права, страховка, СТС) Иногда по забывчивости водители садятся за руль без ВУ и получают штраф за езду без документов. Напомним, что автолюбитель за рулём при себе в обязательном порядке […]
        • Как оформить цветок для мужчины Цветы мужчин. Какие цветы можно подарить мужчине? Какие цветы мужчине можно подарить? «Мужских» цветов не так много, но есть такие, которые дарят мужчинам. Маленький цветочный список перед вами: Хризантемы. Розы. Гвоздики. […]
        • Служебная записка на замену принтера образец Служебная записка – это специальная форма документа, которая используется во внутренней среде предприятия и служит для быстрого решения текущих производственных проблем. Обычно этот документ составляется с целью внесения какого-либо […]
        • Накопительная часть пенсии в сбербанке как получить Когда и как получить накопительную часть пенсии в Сбербанке? Сбербанк является банком-партнером государственного пенсионного фонда. На основании этого граждане, оформившие накопительную пенсию, могли переводить в него накопительную часть […]
        • Детские пособия в димитровграде Детские пособия в Ульяновске и Ульяновской области в 2018 году Кроме того, во всех субъектах работают программы, утвержденные федеральным законодательством. Разберем , кто и на какие льготы может рассчитывать. Как региональные власти […]
        • Доверенность на участие в суде от физического лица Подробное руководство, как составить доверенность на представление интересов физического лица в суде В гражданском или арбитражном иске, в административном или уголовном деле интересы и истца, и ответчика могут представляться поверенным: […]