Эпюры по правилу верещагина

Правило (способ, метод) Верещагина

Недостатком метода Мора является необходимость получать значения внутренних силовых факторов, входящих в подинтегральные выражения формул (2.18) и (2.19), в общем виде, как функций от z, что становится достаточно трудоемким уже при двух – трех участках разбиения в балках и особенно – в рамах.

Оказывается, что от этого недостатка можно уйти, если непосредственное интегрирование в формулах Мора заменить так называемым перемножением эпюр. Такая замена возможна в тех случаях, когда хотя бы одна из перемножаемых эпюр является прямолинейной. Этому условию соответствуют все системы, состоящие из прямолинейных стержней. Действительно, в таких системах эпюра, построенная от обобщенной единичной силы, всегда будет прямолинейной.

Способ вычисления интеграла Мора путем замены непосредственного интегрирования перемножением соответствующих эпюр называется способом (или правилом) Верещагина и заключается в следующем: чтобы перемножить две эпюры, из которых хотя бы одна является прямолинейной, нужно площадь одной эпюры (если есть криволинейная эпюра, то обязательно ее площадь) умножить на ординату другой эпюры, расположенную под центром тяжести первой.

Докажем справедливость этого правила. Рассмотрим две эпюры (рис.28). Пусть одна из них (Mn) является грузовой и имеет криволинейное очертание, а вторая соответствует единичной нагрузке и является линейной.

Из рис.28 следует, что Подставим значения в выражение

где — дифференциал площади эпюры Mn.

Рис. 28

Интеграл представляет собой статический момент площади относительно оси О – О1, при этом:

где zc – абсцисса центра тяжести площади , тогда:

Учитывая, что получим:
(2.20)
Выражение (2.20) определяет результат перемножения двух эпюр, а не перемещения. Чтобы получить перемещение, этот результат нужно разделить на жесткость, соответствующую внутренним силовым факторам, стоящим под знаком интеграла.

Основные варианты перемножения эпюр

Очевидно, что разнообразие приложенных нагрузок и геометрических схем конструкций приводит к различным, с точки зрения геометрии, перемножаемым эпюрам. Для реализации правила Верещагина нужно знать площади геометрических фигур и координаты их центров тяжести. На рис.29 представлены некоторые основные варианты, возникающие в практических расчетах.

Для перемножения эпюр сложной формы их необходимо разбивать на простейшие. Например, для перемножения двух эпюр, имеющих вид трапеции, нужно одну из них разбить на треугольник и прямоугольник, умножить площадь каждого из них на ординату второй эпюры, расположенную под соответствующим центром тяжести, и результаты сложить. Аналогично поступают и для умножения криволинейной трапеции на любую линейную эпюру.

Если указанные выше действия проделать в общем виде, то получим для таких сложных случаев формулы, удобные для использования в практических расчетах (рис.30). Так, результат перемножения двух трапеций (рис.30,а):

(2.21)


Рис. 29

По формуле (2.21) можно перемножить и эпюры, имеющих вид «перекрученных» трапеций (рис.30,б), но при этом произведение ординат, расположенных по разные стороны от осей эпюр, учитывается со знаком минус.

Если одна из перемножаемых эпюр очерчена по квадратной параболе (что соответствует нагружению равномерно распределенной нагрузкой), то для перемножения со второй (обязательно линейной) эпюрой ее рассматривают как сумму (рис.30,в) или разность (рис.30,г) трапециидальной и параболической эпюр. Результат перемножения в обоих случаях определяется формулой:
(2.22)

но значение f при этом определяется по-разному (рис. 30, в, г).


Рис. 30

Возможны случаи, когда ни одна из перемножаемых эпюр не является прямолинейной, но хотя бы одна из них ограничена ломаными прямыми линиями. Для перемножения таких эпюр их предварительно разбивают на участки, в пределах каждого из которых по крайней мере одна эпюра являетя прямолинейной.
Рассмотрим использование правила Верещагина на конкретных примерах.

Пример 15. Определить прогиб в середине пролета и угол поворота левого опорного сечения балки, нагруженной равномерно распределенной нагрузкой (рис.31,а), способом Верещагина.

Последовательность расчета способом Верещагина – такая же, как и в методе Мора, поэтому рассмотрим три состояния балки: грузовое – при действии распределенной нагрузки q; ему соответствует эпюра Mq (рис.31,б), и два единичных состояния — при действии силы приложенной в точке С (эпюра , рис.31,в), и момента , приложенного в точке В (эпюра , рис.31,г).

Прогиб балки в середине пролета:

.

Аналогичный результат был получен ранее методом Мора (см. пример 13). Следует обратить внимание на тот факт, что перемножение эпюр выполнялось для половины балки, а затем, в силу симметрии, результат удваивался. Если же площадь всей эпюры Mq умножить на расположенную под ее центром тяжести ординату эпюры (на рис.31,в), то величина перемещения будет совершенно иной и неправильной так как эпюра ограничена ломаной линией. На недопустимость такого подхода уже указывалось выше.

А при вычислении угла поворота сечения в точке В можно площадь эпюры Mq умножить на расположенную под ее центром тяжести ординату эпюры (, рис.31,г), так как эпюра ограничена прямой линией:

Этот результат также совпадает с результатом, полученным ранее методом Мора (см. пример 13).


Рис. 31

Пример 16. Определить горизонтальное и вертикальное перемещения точки А в раме (рис.32,а).

Как и в предыдущем примере, для решения задачи необходимо рассмотреть три состояния рамы: грузовое и два единичных. Эпюра моментов MF, соответствующая первому состоянию, представлена на рис.32,б. Для вычисления горизонтального перемещения прикладываем в точке А по направлению искомого перемещения (т.е. горизонтально) силу , а для вычисления вертикального перемещения силу прикладываем вертикально (рис.32,в,д). Соответствующие эпюры и показаны на рис.32,г,е.

Горизонтальное перемещение точки А:


При вычислении на участке АВ трапеция (эпюра MF) разбита на треугольник и прямоугольник, после чего треугольник с эпюры «умножен» на каждую из этих фигур. На участке ВС криволинейная трапеция разделена на криволинейный треугольник и прямоугольник, а для перемножения эпюр на участке СД использована формула (2.21).

Знак » — «, полученный при вычислении , означает, что точка А перемещается по горизонтали не влево (в этом направлении приложена сила ), а вправо.
Вертикальное перемещение точки А:


Здесь знак » — » означает, что точка А перемещается вниз, а не вверх.

Отметим, что единичные эпюры моментов, построенные от силы , имеют размерность длины, а единичные эпюры моментов построенные от момента , являются безразмерными.

Пример 17. Определить вертикальное перемещение точки А плоско-пространственной системы (рис.33,а).


Рис.23

Как известно (см. гл.1), в поперечных сечениях стержней плоско-пространственной системы возникают три внутренних силовых фактора: поперечная сила Qy, изгибающий момент Mx и крутящий момент Mкр. Так как влияние поперечной силы на величину перемещения незначительно (см. пример 14, рис.27), то при вычислении перемещения методом Мора и Верещагина из шести слагаемых остаются только два.

Для решения задачи построим эпюры изгибающих моментов Mx,q и крутящих моментов Мкр,q от внешней нагрузки (рис.33,б), а затем в точке А приложим силу по направлению искомого перемещения, т.е. вертикального (рис.33,в), и построим единичные эпюры изгибающих моментов и крутящих моментов (рис.33,г). Стрелками на эпюрах крутящих моментов показаны направления закручивания соответствующих участков плоско-пространственной системы.

Вертикальное перемещение точки А:


При перемножении эпюр крутящих моментов произведение берется со знаком «+», если стрелки, указывающие направление кручения, сонаправленны, и со знаком » — » – в противном случае.

ПроСопромат.ру

Технический портал, посвященный Сопромату и истории его создания

Правило Верещагина (способ перемножения эпюр)

Во многих случаях интегрирования по Мору можно избежать и применить способ«перемножения» эпюр. Одним из таких способов является способ Симпсона, но также можно определить перемещения по способу (правилу) Верещагина. Этот способ А.К. Верещагин предложил в 1924 году, будучи студентом.

Рассмотрим последовательность действий по правилу Верещагина. Начальный этап такой же, как по формуле Мора и способу Симпсона, т.е. вначале строится грузовая эпюра от действующих нагрузок (действительное состояние), затем рассматриваем балку во вспомогательном состоянии. Вспомогательное состояние получается следующим образом: сначала всю заданную нагрузку нужно удалить, затем приложить «единичный силовой фактор» в том месте, где требуется определить перемещение, и по направлению этого искомого перемещения. Причем, когда определяем линейное перемещение (прогиб балки), то в качестве «единичного силового фактора» принимается сосредоточенная сила, равная единице , а если требуется найти угол поворота, то приложить следует сосредоточенную пару сил, момент, равный единице. Строится эпюра единичных моментов или эпюра от единичной нагрузки. Далее перемещение вычисляется по формуле:

, где в числителе — произведение площади грузовой эпюры на ординату единичной (обязательно прямолинейной), взятой под центром тяжести грузовой эпюры, а в знаменателе — жесткость сечения.

Этот способ становится понятным,если доказать, что результат перемножения двух эпюр ,одна и которых произвольна ,а другая линейна, равен произведению площади грузовой эпюры на ординату единичной, взятой под центром тяжести грузовой эпюры.

Следует иметь в виду, что способы «перемножения» эпюр применимы только при наличии двух условий:

  1. Изгибная жесткость балки на рассматриваемом участке должна быть постоянной(EI=Const),
  2. Одна из двух эпюр моментов на этом участке (грузовая или единичная) должна быть обязательно линейной. При этом обе эпюры не должны в пределах данного участка иметь перелома.

Пусть грузовая эпюра произвольна, а единичная линейна (так как единичной нагрузкой бывает обычно либо сосредоточенная сила, либо пара сил, то единичная эпюра М 0 оказывается ограниченной прямыми линиями). Пусть грузовая эпюра М(z) имеет криволинейное очертание, а эпюра М 0 – прямолинейное (см. рисунок). Произведение можно рассматривать как элемент площади эпюры М, заштрихованной на рисунке.

Так как ордината М 0 равна то произведение , а весь интеграл , где

статический момент площади эпюры М(z) относительно оси ординат

Но! Статический момент площади ,как известно, это произведение самой площади на координату центра тяжести. Тогда

, где — это

ордината в единичной эпюре, расположенной под центром тяжести грузовой эпюры. Окончательно, перемещение равно:

Таким образом, результат перемножения двух эпюр равен произведению площади грузовой эпюры на ординату другой (обязательно прямолинейной), взятой под центром тяжести грузовой эпюры.

Правило знаков: если обе «перемножаемые» ординаты в двух эпюрах расположены по одну сторону от оси эпюры (то есть они одного знака), то перед их произведением мы должны поставить знак «плюс», а если они по разные стороны от оси эпюры, то перед произведением ставим знак «минус».

Определение перемещений с помощью способа Верещагина

В 1925 г. А. Н. Верещагин предложил простой графоаналитический прием вычисления интеграла Мора в случаях, когда эпюра Mz 1 (или Mz) ограничена прямыми линиями. По существу это прием графоаналитического вычисления определенного интеграла от произведения двух функций f(x) и φ(x), из которых одна, например φ(x), линейная, т. е. имеет вид

.

Рассмотрим участок балки, в пределах которого эпюра изгибающих моментов от единичной нагрузки ограничена одной прямой линией Mz 1 =kx+b, а изгибающий момент от заданной нагрузки изменяется по некоторому произвольному закону Mz. Тогда в пределах этого участка

.

Второй интеграл представляет собой площадь ω эпюры Mz на рассматриваемом участке, а первый — статический момент этой площади относительно оси y и поэтому равен произведению площади ω на координату ее центра тяжести xc. Таким образом,

.

.

Произведение ωyc будет положительным, когда ω и yc расположены по одну сторону от оси эпюры, и отрицательным, если они находятся по разные стороны от этой оси.

Итак, по способу Верещагина операция интегрирования заменяется перемножением площади ω одной эпюры на ординату yc второй (обязательно линейной) эпюры, взятой под центром тяжести площади ω.

Важно всегда помнить, что такое «перемножением» эпюр возможно лишь на участке, ограниченном одной прямой той эпюры, с которой берется ордината yc. Поэтому при вычислении перемещений сечений балок способом Верещагина интеграл Мора по всей длине балки надо заменить суммой интегралов по участкам, в пределах которых эпюра моментов от единичной нагрузки не имеет изломов. Тогда

.

Для успешного применения способа Верещагина необходимо иметь формулы, по которым могут быть вычислены площади ω и координаты xc их центров тяжести. Приведенные в табл. 8.1 данные отвечают только наиболее простым случаям нагружения балки. Однако более сложные эпюры изгибающих моментов допустимо разбивать на простейшие фигуры, площади ωi, и координаты yci которых известны, а затем находить произведение ωyc для такой сложной эпюры суммированием произведений площадей ωi ее частей на соответствующие им координаты yci. Объясняется это тем, что разложение множимой эпюры на части равносильно представлению функции Mz(x) в интеграле (8.46) в виде суммы интегралов. В некоторых случаях упрощает расчеты построение расслоенных эпюр, т. е. от каждой из внешних сил и пар в отдельности.

Если обе эпюры Mz и Mz 1 линейные, конечный результат их перемножения не зависит от того, умножается ли площадь первой эпюры на ординату второй или, наоборот, площадь второй на ординату первой.

Для практического вычисления перемещений по способу Верещагина надо:

1) построить эпюру изгибающих моментов от заданной нагрузки (основная эпюра);

2) снять с балки заданную нагрузку (но сохранить опоры) и приложить в сечение, перемещение которого ищется, в направлении этого перемещения единичную силу, когда ищется прогиб, или единичную пару, если искомым является угол поворота;

3) построить эпюру изгибающих моментов от единичной нагрузи (единичная эпюра);

4) разбить эпюры от заданных нагрузок на отдельные площади ωi и вычислить ординаты yCi единичной эпюры под центрами тяжести этих площадей;

wiki.eduVdom.com

Инструменты пользователя

Инструменты сайта

Боковая панель

Теория вероятностей и математическая статистика
Строительная механика для строительных специальностей
Матанализ. Дифференциальное и интегральное исчисление
economics

Контакты

Определение перемещений. Правило Верещагина

Правило Верещагина:

Чтобы перемножить две эпюры, из которых хотя бы одна является линейной,

нужно вычислить площадь криволинейной эпюры

и умножить ее на ординату yc в линейной эпюре,

вычисленную под центром тяжести криволинейной.

Видео урок :Определение перемещений. Правило Верещагина.

Конспект лекций (для строительных специальностей)


Загрузить всю книгу

Способ Верещагина

Пусть на участке длиной l грузовая эпюра ограничена функцией f 1( z ), единичная эпюра – функцией f 2( z ).

Рассмотрим интеграл вида:

.

Поскольку функция f 2( z ) всегда является линейной, то есть f 2( z )= b + kz , то

.

Учитывая, что площадь грузовой эпюры равна , можно записать

,

где интеграл представляет собой статический момент площади грузовой эпюры относительно оси y и может быть вычислен

,

где z ц..т. — абсцисса точки центра тяжести грузовой эпюры.

.

Таким образом, по правилу Верещагина интеграл Мора определяется как произведение площади грузовой эпюры W 1 на расположенную под центром тяжести грузовой эпюры ординату единичной эпюры f2(zц.т.), отнесенное к жесткости поперечного сечения EJx. Если грузовая эпюра является линейной, то произведение в формуле Верещагина обладает свойством коммутативности.

Определить перемещение среднего сечения консольной балки:

Поскольку обе эпюры являются линейными, при вычислении способом Верещагина возьмем площадь единичной эпюры и ординату грузовой эпюры, соответствующую положению точки центра тяжести единичной эпюры:

.

Определение перемещения методом Мора. Правило Верещагина

Вычислим теперь интеграл Мора путем перемножения эпюр по правилу Верещагина.

Так как обе эпюры прямолинейны, то безразлично, из какой эпюры брать площадь и из какой — ординату.

Площадь грузовой эпюры равна

Центр тяжести этой эпюры расположен на расстоянии 1/3l от заделки. Определяем ординату эпюры моментов от единичной силы, расположенную под

центром тяжести грузовой эпюры. Легко убедиться, что она равна 1/3l.

Тот же результат получается и по таблице интегралов. Результат перемножения эпюр положителен, так как обе эпюры располагаются снизу стержня. Следовательно, точка приложения нагрузки смещается вниз, т. е. по принятому направлению единичной силы.

Для определения углового перемещения (угла поворота) выбираем вспомогательное состояние балки, в котором на конце балки действует сосредоточенный момент, равный единице.

Строим эпюру изгибающих моментов для этого случая (рис. 7.16, в). Определяем угловое перемещение, перемножая эпюры. Площадь грузовой эпюры

Ординаты эпюры от единичного момента везде равны единице., Следовательно, искомый угол поворота сечения равен

Так как обе эпюры расположены снизу, то результат перемножения эпюр положителен. Таким образом, концевое сечение балки поворачивается по часовой стрелке (по направлению единичного момента).

Пример: Определить по способу Мора — Верещагина прогиб в точке D для балки, изображенной на рис. 7.17..

Решение. Строим расслоенную эпюру моментов от нагрузки, т. е. строим отдельные эпюры от действия каждой нагрузки. При этом для удобства перемножения эпюр целесообразно строить расслоенные (элементарные) эпюры относительно сечения, прогиб которого определяется в данном случае относительно сечения D.

На рис. 7.17, а представлена эпюра изгибающих моментов от реакции А (участок AD) и от нагрузки Р = 4 Т (участок DC). Эпюры строятся на сжатом волокне.

На рис. 7.17, б представлены эпюры моментов от реакции В (участок BD), от левой равномерно распределенной нагрузки (участок AD) и от равномерно распределенной нагрузки, действующей на участке ВС. Эта эпюра изображена на рис. 7.17, б на участке DC снизу.

Далее выбираем вспомогательное состояние балки, для чего в точке D, где определяется прогиб, прикладываем единичную силу (рис. 7.17, в). Эпюра моментов от единичной силы изображена на рис. 7.17, г. Теперь перемножим эпюры с 1 по 7 на эпюры 8 и 9, пользуясь таблицами перемножения эпюр, с учетом знаков.

При этом эпюры, расположенные с одной стороны балки, перемножаются со знаком плюс, а эпюры, расположенные по разные стороны балки, перемножаются со знаком минус.

При перемножении эпюры 1 и эпюры 8 получим

Перемножая эпюру 5 на эпюру 8, получим

Перемножение эпюр 2 и 9 дает

Перемножаем эпюры 4 и 9

Перемножаем эпюры 6 и 9

Суммируя результаты перемножения эпюр, получим

Знак минус показывает, что точка D перемещается не вниз, как направлена единичная сила, а вверх.

Этот же результат был получен ранее по универсальному уравнению .

Конечно, в данном примере можно было расслоить эпюру только на участке AD, так как на участке DB суммарная эпюра прямолинейная и ее незачем расслаивать. На участке ВС расслоения не требуется, так как от единичной силы на этом участке эпюра равна нулю. Расслоение эпюры на участке ВС необходимо для определения прогиба в точке С.

Пример. Определить вертикальное, горизонтальное и угловое перемещения сечения А ломаного стержня, представленного на рис. 7.18, а. Жесткость сечения вертикального участка стержня — EJ1 жесткость сечения горизонтального участка — EJ2.

Решение. Строим эпюру изгибающих моментов от нагрузки. Она представлена на рис. 7.18, б (см. пример 6.9). Для определения вертикального перемещения сечения А выбираем вспомогательное состояние системы, представленное на рис. 7.18, в. В точке А приложена единичная вертикальная сила, направленная вниз.

Эпюра изгибающих моментов для этого состояния представлена на рис. 7.18, в.

Определяем вертикальное перемещение по методу Мора, используя способ перемножения эпюр. Так как на вертикальном стержне во вспомогательном состоянии эпюра М1 отсутствует, то перемножаем только эпюры, относящиеся к горизонтальному стержню. Площадь эпюры берем из грузового состояния, а ординату — из вспомогательного. Вертикальное перемещение равно

Так как обе эпюры расположены снизу, то результат перемножения берем со знаком плюс. Следовательно, точка А перемещается вниз, т. е. так, как направлена единичная вертикальная сила.

Для определения горизонтального перемещения точки А выбираем вспомогательное состояние с горизонтальной единичной силой, направленной влево (рис. 7.18, г). Эпюра моментов для этого случая представлена там же.

Перемножаем эпюры МP и М2 и получаем

Результат перемножения эпюр положителен, так как перемножаемые эпюры располагаются на одной и той же стороне стержней.

Для определения углового перемещения выбираем вспомогательное состояние системы по рис. 7.18,5 и строим эпюру изгибающих моментов для этого состояния (на том же рисунке). Перемножаем эпюры МР и М3:

Результат перемножения положителен, так как перемножаемые эпюры располагаются с одной стороны.

Следовательно, сечение A поворачивается по часовой стрелке

Те же результаты получились бы и при использовании таблиц
перемножения эпюр.

Вид деформированного стержня показан на рис. 7.18, е, при этом перемещения сильно увеличены.

Феодосьев В.И. Сопротивление материалов. 1986

Беляев Н.М. Сопротивление материалов. 1976

Красковский Е.Я., Дружинин Ю.А., Филатова Е.М. Расчет и конструирование механизмов приборов и вычислительных систем. 1991

Работнов Ю.Н. Механика деформируемого твердого тела. 1988

Правило Верещагина

Определение перемещений в системах, состоящих из прямоли­нейных элементов постоянной жесткости, можно значительно упростить путем применения специального приема вычисления

интеграла вида

В связи с тем что в подын­тегральное выражение входит произведение уси­лий Мт и Мп, являющих­ся ординатами эпюр, пост­роенных для единичного и действительного состояний, этот прием называют спо­собом перемножения эпюр. Его можно использовать в -случае, когда одна из пе­ремножаемых эпюр, нап­ример Мт, прямолинейна; в этом случае (рис. 5.17)

Вторая эпюра Мп может иметь любое очертание (прямолинейное, ломаное

Подставим значение Мm в выражение

где Мп dx= dΩn— дифференциал площади Ωn эпюры Мn (рис. 5.17),

Интеграл представляет собой статический момент площади Ωn эпюры Мп относительно оси 0—0′ (рис. 5.17). Этот статический момент можно выразить иначе:

где хс—абсцисса центра тяжести площади эпюры Мn. Тогда

Но так как (см. рис. 5.17)

(5.26)

Таким образом, результат перемножения двух эпюр равен про­изведению площади одной из них на ординату ус другой (прямоли­нейной) эпюры, взятую под центром тяжести площади первой эпюры.

Способ перемножения эпюр предложен в 1925 г. студентом Мос­ковского института инженеров железнодорожного транспорта А. К. Верещагиным, а потому он называется правилом (или спосо­бом) Верещагина,

Заметим, что левая часть выражения (5.26) отличается от ин­теграла Мора отсутствием в ней жесткости сечения EJ. Следова­тельно, результат выполнения по правилу Верещагина перемноже­ния эпюр для определения искомого перемещения надо разделить на жесткость.

Очень важно отметить, что ордината ус должна быть взята обя­зательно из прямолинейной эпюры. Если обе эпюры прямолиней­ны, то ординату можно взять из любой эпюры. Так, если требуется перемножить прямолинейные эпюры Mi а Мк (рис. 518, а), то не имеет значения, что взять: произведение yk площади эпюры Mi на ординату yk под ее центром тяжести из эпюры Мк или про­изведение Ω_k yi площади эпюры М k на ординату уi под (или над) ее центром тяжести из эпюры Мг.

Когда перемножаются две эпюры, имеющие вид трапеции, то не надо находить положение центра тяжести площади одной из них. Следует одну из эпюр разбить на два треугольника и умножить площадь каждого из них на ординату под его центром тяжести из другой эпюры. Например, в случае, приведенном на рис. 518, б, получим

(5.27)

В круглых скобках этой формулы произведение ас левых орди­нат обеих эпюр и произведение bd правых ординат берутся с коэф­фициентом, равным двум» а произведения ad и bc ординат, расположенных с разных сторон,— с коэффициентом, равным единице.

С помощью формулы (5.27) можно перемножать эпюры, имеющие вид «перекрученных» трапеций; при этом произведения ординат, имеющих одинаковые знаки, берутся со знаком плюс, а разные — -минус. В случае, например, показанном на рис. 5.18,в, результат перемножения эпюр в виде «перекрученной» и обычной трапеций равен (l/6) (2ac-2bd+ad-bc), а в случае, показанном на рис. 5.18, г, равен (l/6) (-2ac-2bd+ad+bc).

Формула (5.27) применима и тогда, когда одна или обе перемно­жаемые эпюры имеют вид треугольника. В этих случаях треуголь­ник рассматривается как трапеция с одной крайней ординатой, равной нулю. Результат, например, перемножения эпюр, показан­ных на рис. 5.18, д, равен (l/6) (2ac+ad).

Умножение эпюры в виде «перекрученной» трапеции на любую другую эпюру можно производить и расчленяя «перекрученную» трапецию на два треугольника, как показано на рис. 5.18, е.

Лекция № 6. Расчет статически неопределимых плоских стержневых систем: балок, рам, ферм.

1.1. Основная система. Основные неизвестные.

1.2. Система канонических уравнений метода сил для расчета на действие внешней нагрузки.

1.3. Расчет статически неопределимых систем методом сил.

2. Метод перемещений.

2.1. Выбор неизвестных и определение их числа.

2.2. Определение числа неизвестных

2.3. Основная система

2.4. Канонические уравнения

3. Основы расчета систем методом конечных элементов.

Смотрите еще:

  • Возврат прав из гибдд Порядок возврата прав после лишения водительского удостоверения: как вернуть ВУ после истечения срока наказания? Как правило, граждане нашей страны начинают изучать свои права и обязанности уже после того, как они были нарушены или […]
  • Договор дарения недвижимости несовершеннолетнему Можно ли оформить договор дарения на несовершеннолетнего? Многие родители, заботящиеся о будущем своих детей, задумываются об официальном оформлении имущества на имя ребенка. Собственная недвижимость – весомая гарантия стабильности в […]
  • Льготы для юридических лиц по земельному налогу Земельный налог для организаций в 2018 году: кбк, расчет, порядок уплаты, льготы В соответствии с налоговым законодательством РФ, налог на землю признан местным. В связи с данным фактом в общероссийском законодательстве определены лишь […]
  • Фз о выплате осаго Принят закон о приоритете восстановительного ремонта по ОСАГО Соответствующий закон подписал сегодня Президент РФ Владимир Путин (Федеральный закон от 28 марта 2017 г. № 49-ФЗ "О внесении изменений в Федеральный закон "Об обязательном […]
  • Сроки закона о приватизации Продлен срок бесплатной приватизации жилья В субботу, 28 февраля, президент России Владимир Путин подписал закон, который продлил срок бесплатной приватизации жилых помещений еще на год, до 1 марта 2016 года (Федеральный закон от 28 […]
  • Претензия по содержанию жилья Претензия в управляющую компанию Как часто у собственников жилья в многоквартирном доме пускаются руки от постоянного недовольства коммунальщиками, а ведь в таких случаях претензия в управляющую компанию может оказаться действенным […]
  • Выплаты по страховому случаю сотруднику полиции Страховка МВД Все отношения работников МВД и военнослужащих на территории РФ законодательно регулируются. На регулирование отношений направлен Федеральный закон от 28 марта 1998 г. N 52-ФЗ, в котором рассматриваются все возможные случаи […]
  • Как проверить поступление пенсии Узнайте, как посмотреть накопительную часть пенсии в Сбербанке: используем онлайн портал и разбираем частые ошибки НПФ Сбербанка — организация с безупречной репутацией, заслужившая доверие миллионов россиян. Множество граждан нашей […]